Skip to main content
Log in

A High-Order Level-Set Method with Enhanced Stability for Curvature Driven Flows and Surface Diffusion Motion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A high-order explicit level-set method based on the total variation diminishing Runge–Kutta method, a high-order scheme for distance computation and a smoothing scheme has been developed for simulating curvature driven flows and surface diffusion motion. This method overcomes the high-order CFL time restriction. The enhanced stability is achieved by utilizing several techniques, resulting in an accurate and smooth velocity field. In particular, the scheme for distance computation is used to reinitialize the level-set function and to extend the velocity from the zero level-set to the rest of the domain. As such, it greatly reduces the accumulated errors typically observed in the traditional PDE-based methods. The smoothing technique is used to remove the high-frequency oscillations produced by the high-order derivatives of the level-set function and is the key to the stability enhancement. A local treatment scheme was also developed which is crucial in the simulation of merging events. Results on several benchmark problems have demonstrated. Compared with some semi-implicit methods, the developed method is more accurate and has the same, if not better, stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100(2), 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  4. English, R.E., Qiu, L., Yu, Y., Fedkiw, R.: Chimera grids for water simulation. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2013, pp. 85–94. ACM (2013)

  5. Caselles, V., Morel, J.-M., Sapiro, G., Tannenbaum, A.R.: Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Process. 7(3), 269–274 (1998)

    Article  Google Scholar 

  6. Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12), 3243–3254 (2010)

    Article  MathSciNet  Google Scholar 

  7. Xie, X., Wang, C., Zhang, A., Meng, X.: Active contours model exploiting hybrid image information: an improved formulation and level set method. J. Comput. Inf. Syst. 9(20), 8371–8379 (2013)

    Google Scholar 

  8. Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 152(1), 281–304 (1999)

    Article  MATH  Google Scholar 

  9. Chopp, D.L., Sethian, J.A.: Motion by intrinsic Laplacian of curvature. Interfaces Free Bound. 1(1), 107–123 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19(1), 439–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolahdouz, E.M., Salac, D.: A semi-implicit gradient augmented level set method. SIAM J. Sci. Comput. 35(1), A231–A254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruchon, J., Drapier, S., Valdivieso, F.: 3D finite element simulation of the matter flow by surface diffusion using a level set method. Int. J. Numer. Methods Eng. 86(7), 845–861 (2011)

    Article  MATH  Google Scholar 

  13. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2), 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. preprint (2014)

  15. Chopp, D.L.: Computing minimal surfaces via level set curvature flow. J. Comput. Phys. 106(1), 77–91 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155(2), 410–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salac, D.: The augmented fast marching method for level set reinitialization. Bull. Am. Phys. Soc. 56 (2011)

  19. Anumolu, L., Trujillo, M.F.: Gradient augmented reinitialization scheme for the level set method. Int. J. Numer. Methods Fluids 73(12), 1011–1041 (2013)

    MathSciNet  Google Scholar 

  20. Sethian, J.A.: Curvature and the evolution of fronts. Commun. Math. Phys. 101(4), 487–499 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Osher, S., Ronald, F.: Level Set Methods and Dynamic Implicit Surfaces, 2003 edition. Applied Mathematical Sciences, vol. 153. Springer, New York, 31 Oct (2002)

  22. Elsey, M., Esedoglu, S.: Fast and accurate redistancing by directional optimization. SIAM J. Sci. Comput. 36(1), A219–A231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saye, R.: High-order methods for computing distances to implicitly defined surfaces. Commun. Appl. Math. Comput. Sci. 9(1), 107–141 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Macklin, P., Lowengrub, J.: Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J. Comput. Phys. 203(1), 191–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruuth, S.J.: Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144(2), 603–625 (1998). doi:10.1006/jcph.1998.6025

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruuth, S.J.: A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145(1), 166–192 (1998). doi:10.1006/jcph.1998.6028

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, K.H., Zhang, L., Song, H.H., Zhang, D.: Reinitialization-free level set evolution via reaction diffusion. IEEE Trans. Image Process. 22(1), 258–271 (2013). doi:10.1109/tip.2012.2214046

    Article  MathSciNet  Google Scholar 

  28. Strang, G.: The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weinert, H.L.: Efficient computation for Whittaker–Henderson smoothing. Comput. Stat. Data Anal. 52(2), 959–974 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010). doi:10.1016/j.csda.2009.09.020

    Article  MathSciNet  MATH  Google Scholar 

  31. Pan, J., Cocks, A., Kucherenko, S.: Finite element formulation of coupled grain-boundary and surface diffusion with grain-boundary migration. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1965), 2161–2184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Barrett, J.W., Garcke, H., Nürnberg, R.: A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222(1), 441–467 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chopp, D.L.: Some improvements of the fast marching method. SIAM J. Sci. Comput. 23(1), 230–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Buckley, M.J.: Fast computation of a discretized thin-plate smoothing spline for image data. Biometrika 81(2), 247–258 (1994). doi:10.1093/biomet/81.2.247

    Article  MathSciNet  MATH  Google Scholar 

  35. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Salac, D., Lu, W.: A local semi-implicit level-set method for interface motion. J. Sci. Comput. 35(2–3), 330–349 (2008). doi:10.1007/s10915-008-9188-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Lervåg, K.Y.: Calculation of interface curvature with the level-set method. In: Sixth National Conference on Computational Mechanics MekIT’ 11, Trondherim (2011)

  38. Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretization for level set methods: application to tumor growth. J. Comput. Phys. 215(2), 392–401 (2006). doi:10.1016/j.jcp.2005.11.016

    Article  MathSciNet  MATH  Google Scholar 

  39. Ervik, Å., Lervåg, K.Y., Munkejord, S.T.: A robust method for calculating interface curvature and normal vectors using an extracted local level set. J. Comput. Phys. 257, 259–277 (2014). doi:10.1016/j.jcp.2013.09.053

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Ye.

Appendix

Appendix

The algorithm for our new approach is summarized as follows:

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ye, W. A High-Order Level-Set Method with Enhanced Stability for Curvature Driven Flows and Surface Diffusion Motion. J Sci Comput 69, 1316–1345 (2016). https://doi.org/10.1007/s10915-016-0236-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0236-3

Keywords

Navigation