Skip to main content
Log in

Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a shock capturing procedure for high order Discontinuous Galerkin methods, by which shock regions are refined in sub-cells and treated by finite volume techniques. Hence, our approach combines the good properties of the Discontinuous Galerkin method in smooth parts of the flow with the perfect properties of a total variation diminishing finite volume method for resolving shocks without spurious oscillations. Due to the sub-cell approach the interior resolution on the Discontinuous Galerkin grid cell is nearly preserved and the number of degrees of freedom remains the same. This structure allows the interpretation of the data either as DG solution or as finite volume solution on the subgrid. In this paper we explain the efficient implementation of this coupled method on massively parallel computers and show some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Altmann, C., Taube, A., Gassner, G., Lörcher, F., Munz, C.D.: Shock detection and limiting strategies for high order discontinuous Galerkin schemes. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 1053–1058. Springer, Berlin (2009)

    Chapter  Google Scholar 

  2. Atak, M., Beck, A., Bolemann, T., Flad, D., Frank, H., Munz, C.D.: High Fidelity Scale-Resolving Computational Fluid Dynamics Using the High Order Discontinuous Galerkin Spectral Element Method, pp. 511–530. Springer International Publishing, Cham (2016)

    Google Scholar 

  3. Atak, M., Larsson, J., Munz, C.D.: The Multicore Challenge: Petascale DNS of a Spatially-Developing Supersonic Turbulent Boundary Layer Up to High Reynolds Numbers Using DGSEM. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Qi, J., Roller, S. (eds.) Sustained Simulation Performance 2015, pp. 171–183. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  4. Balsara, D.S., Altmann, C., Munz, C.D., Dumbser, M.: A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes. J. Comput. Phys. 226(1), 586–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation. Journal of Computational Physics 229(5), 1810–1827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 31, 79–95 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  11. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation Laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shu, C.W., Lin, S.: The Runge–Kutta Local Projection P1-discontinuous-Galerkin Finite Element Method for Scalar Conservation Laws. Institute for Mathematics and its Applications, Minneapolis (1989)

    MATH  Google Scholar 

  16. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-Eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)

    Article  MATH  Google Scholar 

  18. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012). “High Fidelity Flow Simulations” Onera Scientific Day

    Article  MathSciNet  Google Scholar 

  20. Huerta, A., Casoni, E., Peraire, J.: A simple shock-capturing technique for high-order discontinuous galerkin methods. Int. J. Numer. Methods Fluids 69(10), 1614–1632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes In: Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (1981)

  22. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media, New York (2009)

    Book  MATH  Google Scholar 

  23. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lasaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Academic Press (1974)

  25. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36(1), 9–15 (1971)

    Article  MATH  Google Scholar 

  27. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006)

  28. Premasuthan, S., Liang, C., Jameson, A.: Computation of flows with shocks using the spectral difference method with artificial viscosity, I: basic formulation and application. Comput. Fluids 98, 111–121 (2014)

    Article  MathSciNet  Google Scholar 

  29. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for runge-kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rault, A., Chiavassa, G., Donat, R.: Shock–Vortex interactions at high mach numbers. J. Sci. Comput. 19(1–3), 347–371 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR–73-479, Los Alamos Scientific Laboratory (1973)

  32. Roe, P.L.: Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18, 337–365 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Roe, P.L.: Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63(2), 458–476 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sabat, M., Larat, A., Vié, A., Massot, M.: Comparison of realizable schemes for the Eulerian simulation of disperse phase flows. In: J. Fuhrmann, M. Ohlberger, C. Rohde (eds.) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 935–943. Springer International Publishing (2014)

  35. Schulz-Rinne, C.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, New York (1999)

    Book  MATH  Google Scholar 

  39. Toro, E.F., Clarke, J.F.: Numerical Methods for Wave Propagation. Springer Publishing Company Incorporated, New York (2011)

    Google Scholar 

  40. van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    Article  MATH  Google Scholar 

  41. VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  42. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Sonntag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonntag, M., Munz, CD. Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells. J Sci Comput 70, 1262–1289 (2017). https://doi.org/10.1007/s10915-016-0287-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0287-5

Keywords

Navigation