Skip to main content
Log in

A Simple Bound-Preserving Sweeping Technique for Conservative Numerical Approximations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a simple bound-preserving sweeping procedure for conservative numerical approximations. Conservative schemes are of importance in many applications, yet for high order methods, the numerical solutions do not necessarily satisfy maximum principle. This paper constructs a simple sweeping algorithm to enforce the bound of the solutions. It has a very general framework acting as a postprocessing step accommodating many point-based or cell average-based discretizations. The method is proven to preserve the bounds of the numerical solution while conserving a prescribed quantity designated as a weighted average of values from all points. The technique is demonstrated to work well with a spectral method, high order finite difference and finite volume methods for scalar conservation laws and incompressible flows. Extensive numerical tests in 1D and 2D are provided to verify the accuracy of the sweeping procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Cai, X., Zhang, X., Qiu, J.: Positivity-preserving high order finite volume HWENO schemes for compressible Euler equations. J. Sci. Comput. 68(2), 464–483 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  2. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334–351 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  3. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hewitt, E., Hewitt, R.E.: The Gibbs–Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21(2), 129–160 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hu, X., Adams, N., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58(1), 41–60 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Pareschi, L., Russo, G.: On the stability of spectral methods for the homogeneous Boltzmann equation. Transp. Theory Stat. Phys. 29(3–5), 431–447 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57(1), 19–41 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010)

    Article  Google Scholar 

  13. Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Xiong, T., Qiu, J.-M., Xu, Z.: High order maximum-principle-preserving discontinuous galerkin method for convection–diffusion equations. SIAM J. Sci. Comput. 37(2), A583–A608 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xiong, T., Qiu, J.-M., Xu, Z.: Parametrized positivity preserving flux limiters for high order finite difference WENO scheme solving compressible Euler equations. J. Sci. Comput. 67(3), 1066–1088 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  16. Xiong, T., Qiu, J.-M., Xu, Z., Christlieb, A.: High order maximum principle preserving semi-lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273, 618–639 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83(289), 2213–2238 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yang, P., Xiong, T., Qiu, J.-M., Xu, Z.: High order maximum principle preserving finite volume method for convection dominated problems. J. Sci. Comput. 67(2), 795–820 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang, X., Liu, Y., Shu, C.-W.: Maximum-principle-satisfying high order finite volume weighted essentially nonoscillatory schemes for convection–diffusion equations. SIAM J. Sci. Comput. 34(2), A627–A658 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 467, 2752–2776 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingda Cheng.

Additional information

Yuan Liu: Research is supported by Mississippi State University startup grant and a grant from the Simons Foundation (426993). Yingda Cheng: Research is supported by NSF Grants DMS-1318186 and DMS-1453661. Chi-Wang Shu: Research is supported by ARO Grant W911NF-15-1-0226 and NSF Grant DMS-1418750.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cheng, Y. & Shu, CW. A Simple Bound-Preserving Sweeping Technique for Conservative Numerical Approximations. J Sci Comput 73, 1028–1071 (2017). https://doi.org/10.1007/s10915-017-0395-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0395-x

Keywords

Navigation