Skip to main content
Log in

Convergence Analysis in the Maximum Norm of the Numerical Gradient of the Shortley–Weller Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Shortley–Weller method is a standard central finite-difference-method for solving the Poisson equation in irregular domains with Dirichlet boundary conditions. It is well known that the Shortley–Weller method produces second-order accurate solutions and it has been numerically observed that the solution gradients are also second-order accurate; a property known as super-convergence. The super-convergence was proved in the \(L^{2}\) norm in Yoon and Min (J Sci Comput 67(2):602–617, 2016). In this article, we present a proof for the super-convergence in the \(L^{\infty }\) norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Caffarelli, L.A., Gilardi, G.: Monotonicity of the free boundary in the two-dimensional dam problem. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 7(3), 523–537 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 135(2), 118–125 (1997)

    Article  MATH  Google Scholar 

  3. Ciarlet, P.G., Miara, B., Thomas, J.M.: Introduction to Numerical Linear Algebra and Optimisation. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  4. Friedman, A.: Variational principles and free-boundary problems. Courier Corporation, North Chelmsford (2010)

    Google Scholar 

  5. Gibou, F., Min, C.: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys. 231, 3245–3263 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Gustafsson, I.: A class of first order factorization methods. BIT 18, 142–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8(3), 2182–2189 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  9. Li, Z.-C., Hu, H.-Y., Wang, S., Fang, Q.: Superconvergence of solution derivatives of the shortley-weller difference approximation to poisson’s equation with singularities on polygonal domains. Appl. Numer. Math. 58(5), 689–704 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ng, Y.T., Chen, H., Min, C., Gibou, F.: Guidelines for poisson solvers on irregular domains with dirichlet boundary conditions using the ghost fluid method. J. Sci. Comput. 41(2), 300–320 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Peskin, C.S.: Flow patterns around heart valves. In: Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, pp. 214–221. Springer (1973)

  12. Shortley, G.H., Weller, R.: The numerical solution of Laplace’s equation. J. Appl. Phys. 9(5), 334–348 (1938)

    Article  MATH  Google Scholar 

  13. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. SIAM, New Delhi (2004)

    Book  MATH  Google Scholar 

  14. Weynans, L.: A proof in the finite-difference spirit of the superconvergence of the gradient for the Shortley–Weller method. Ph.D. thesis, INRIA Bordeaux (2015)

  15. Xiu, D., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yoon, G., Min, C.: Analyses on the finite difference method by Gibou, et al. for poisson equation. J. Comput. Phys. 280, 184–194 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yoon, G., Min, C.: Convergence analysis of the standard central finite difference method for Poisson equation. J. Sci. Comput. 67(2), 602–617 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yoon, G., Min, C., Kim, S.: A stable and convergent method for hodge decomposition of fluid-solid interaction. (2016). arXiv:1610.03195

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chohong Min.

Appendix: Detailed Calculations in Lemma 4.3

Appendix: Detailed Calculations in Lemma 4.3

In this section, we provide detailed calculations that lead to the estimate \(\left\| D_{x}^{h}c^{h}\right\| _{L^{\infty }\left( \tilde{\Omega _{o}^{h}}\right) }\le \frac{105}{4}\max _{\tilde{\Omega },\left| \alpha \le 5\right| }\left| \partial ^{\alpha }u\right| \cdot h^{2}\) in Lemma 4.3.

Using the Taylor series of \(u\left( x,y\right) \) at \(\left( x_{i+\frac{1}{2}},y_{j}\right) ,\) the terms that sum up \(D_{x}^{h}c^{h}\) in (4) are expanded. For notational conveniences, the local coordinates centered at \(\left( x_{i+\frac{1}{2}},y_{j}\right) \) are used in the calculations. For example, \(u_{i+1,j+1}\) is denoted by \(u\left( \frac{h}{2},h\right) \). The Taylor expansions are listed below with remainders.

$$\begin{aligned} \begin{array}{rrrrrrrrrrr} u\left( \pm \frac{3h}{2},0\right) =u &{} \pm &{} \frac{3h}{2}u_{x} &{} + &{} \frac{9h^{2}}{8}u_{xx} &{} \pm &{} \frac{9h^{3}}{16}u_{xxx} &{} + &{} \frac{27h^{4}}{128}u_{xxxx} &{} \pm &{} \frac{81h^{5}}{1280}u_{xxxxx}\left( \xi _{1}^{\pm },0\right) \\ u\left( \pm \frac{h}{2},0\right) =u &{} \pm &{} \frac{h}{2}u_{x} &{} + &{} \frac{h^{2}}{8}u_{xx} &{} \pm &{} \frac{h^{3}}{48}u_{xxx} &{} + &{} \frac{h^{4}}{384}u_{xxxx} &{} \pm &{} \frac{h^{5}}{3840}u_{xxxxx}\left( \xi _{2}^{\pm },0\right) \end{array}\\ \begin{array}{rrrrrcc} \Delta u\left( \pm \frac{h}{2},0\right) =\Delta u&\pm&\frac{h}{2}\left( u_{xxx}+u_{xyy}\right)+ & {} \frac{h^{2}}{8}\left( u_{xxxx}+u_{xxyy}\right)&\pm&\frac{h^{3}}{48}\left( u_{xxxxx}+u_{xxxyy}\right) \left( \xi _{4}^{\pm },0\right) \end{array} \end{aligned}$$
figure a

When the above expansions are inserted into the summation of \(D_{x}^{h}c^{h}\), canceled out all the terms but the remainders.

$$\begin{aligned} D_{x}^{h}c_{i+\frac{1}{2},j}^{h}{=}\frac{h^{2}}{120}\left( \begin{array}{l} {-}\left( \frac{3}{2}\right) ^{5}\left( u_{xxxxx}\left( \xi _{1}^{+},0\right) {+}u_{xxxxx}\left( \xi _{1}^{-},0\right) \right) {+}\frac{5}{2^{5}}\left( u_{xxxxx}\left( \xi _{2}^{+},0\right) {+}u_{xxxxx}\left( \xi _{2}^{-},0\right) \right) \\ -\left( \frac{1}{2}\right) ^{5}\left( \begin{array}{r} \left( u_{xxxxx}{+}u_{xxxxy}{+}u_{xxxyy}{+}u_{xxyyy}{+}u_{xyyyy}{+}u_{yyyyy}\right) \left( \frac{1}{2}\xi _{3}^{+,+},\xi _{3}^{+}\right) \\ {+}\left( u_{xxxxx}{-}u_{xxxxy}{+}u_{xxxyy}{-}u_{xxyyy}{+}u_{xyyyy}{-}u_{yyyyy}\right) \left( \frac{1}{2}\xi _{3}^{+,-},\xi _{3}^{-}\right) \\ {+}\left( u_{xxxxx}{-}u_{xxxxy}{+}u_{xxxyy}{-}u_{xxyyy}{+}u_{xyyyy}{-}u_{yyyyy}\right) \left( \frac{1}{2}\xi _{3}^{-,+},\xi _{3}^{+}\right) \\ {+}\left( u_{xxxxx}{+}u_{xxxxy}{+}u_{xxxyy}{+}u_{xxyyy}{+}u_{xyyyy}{+}u_{yyyyy}\right) \left( \frac{1}{2}\xi _{3}^{-,-},\xi _{3}^{-}\right) \end{array}\right) \\ +\frac{5}{2}\left( \left( u_{xxxxx}+u_{xxxyy}\right) \left( \xi _{4}^{+},0\right) +\left( u_{xxxxx}+u_{xxxyy}\right) \left( \xi _{4}^{-},0\right) \right) \end{array}\right) \end{aligned}$$

Now, we prove the lemma.

$$\begin{aligned} \begin{array}{rcl} \left| D_{x}^{h}c_{i+\frac{1}{2},j}^{h}\right| &{} \le &{} \max _{\tilde{\Omega },\left| \alpha \right| \le 5}\left| \partial ^{\alpha }u\right| \cdot \frac{h^{2}}{120}\left( 2\cdot \left( \frac{3}{2}\right) ^{5}+2\cdot \frac{5}{2^{5}}+4\cdot 6\cdot \left( \frac{1}{2}\right) ^{5}+2\cdot 2\cdot \frac{5}{2}\right) \\ &{} = &{} \frac{105}{4}\max _{\tilde{\Omega },\left| \alpha \le 5\right| }\left| \partial ^{\alpha }u\right| \cdot h^{2}. \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, J., Ha, Sy. & Min, C. Convergence Analysis in the Maximum Norm of the Numerical Gradient of the Shortley–Weller Method. J Sci Comput 74, 631–639 (2018). https://doi.org/10.1007/s10915-017-0458-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0458-z

Keywords

Navigation