Skip to main content
Log in

Surface Couplings for Subdomain-Wise Isoviscous Gradient Based Stokes Finite Element Discretizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The Stokes system with constant viscosity can be cast into different formulations by exploiting the incompressibility constraint. For instance, the rate of strain tensor in the weak formulation can be replaced by the velocity-gradient yielding a decoupling of the velocity components in the different coordinate directions. Consequently, the discretization of this partly decoupled formulation leads to fewer nonzero entries in the stiffness matrix. This is of particular interest in large scale simulations where a reduced memory bandwidth requirement can help to significantly accelerate the computations. In the case of a piecewise constant viscosity, as it typically arises in multi-phase flows, or when the boundary conditions involve traction, the situation is more complex, and one has to treat the cross derivatives in the original Stokes system with care. A naive application of the standard vectorial Laplacian results in a physically incorrect solution, while formulations based on the rate of strain tensor increase the computational effort globally. Here, we propose a new approach that is consistent with the stress-divergence formulation and preserves the decoupling advantages of the velocity-gradient-divergence formulation in isoviscous subdomains. The modification is equivalent to locally changing the discretization stencils at interfaces or boundaries. Hence, the more expensive discretization is of lower complexity, making the additional computational cost in large scale simulations negligible. We establish consistency and convergence properties and show that in a massively parallel setup, the multigrid solution of the resulting discrete systems is faster than for the classical stress-divergence formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  2. Baker, A.H., Klawonn, A., Kolev, T., Lanser, M., Rheinbach, O., Yang, U.M.: Scalability of classical algebraic multigrid for elasticity to half a million parallel tasks. In: Bungartz, H.J., Neumann, P., Nagel, W.E. (eds.) Software for Exascale Computing - SPPEXA 2013-2015, pp. 113–140. Springer, Cham (2016). doi:10.1007/978-3-319-40528-5_6

    Chapter  Google Scholar 

  3. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, S., Bunge, H.P., Drzisga, D., Gmeiner, B., Huber, M., John, L., Mohr, M.R., Rüde, U., Stengel, H., Waluga, C., Weismüller, J., Wellein, G., Wittmann, M., Wohlmuth, B.: Hybrid Parallel Multigrid Methods for Geodynamical Simulations. Springer, Cham (2016). doi:10.1007/978-3-319-40528-5_10

    Book  Google Scholar 

  5. Bergen, B., Gradl, T., Rüde, U., Hülsemann, F.: A massively parallel multigrid method for finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

    Article  Google Scholar 

  6. Bergen, B., Hülsemann, F.: Hierarchical hybrid grids: data structures and core algorithms for multigrid. Numer. Linear Algebra Appl. 11, 279–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bey, J.: Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  9. Boffi, D., Cavallini, N., Gardini, F., Gastaldi, L.: Local mass conservation of Stokes finite elements. J. Sci. Comput. 52(2), 383–400 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems. Springer, Berlin (1984)

    Google Scholar 

  11. Centre, J.S.: JUQUEEN: IBM Blue Gene/Q supercomputer system at the jülich supercomputing centre. J. Large-scale Res Facil. (2015). doi:10.17815/jlsrf-1-18

    Google Scholar 

  12. Cousins, B.R., Le Borne, S., Linke, A., Rebholz, L.G., Wang, Z.: Efficient linear solvers for incompressible flow simulations using Scott-Vogelius finite elements. Numer. Methods Partial Differ. Equ. 29(4), 1217–1237 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai, D., Berthou, J.Y., Boku, T., Braunschweig, B., Cappello, F., Chapman, B., Chi, X., Choudhary, A., Dosanjh, S., Dunning, T., Fiore, S., Geist, A., Gropp, B., Harrison, R., Hereld, M., Heroux, M., Hoisie, A., Hotta, K., Jin, Z., Ishikawa, Y., Johnson, F., Kale, S., Kenway, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky, A., Lippert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse, P., Mohr, B., Mueller, M.S., Nagel, W.E., Nakashima, H., Papka, M.E., Reed, D., Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling, T., Stevens, R., Streitz, F., Sugar, B., Sumimoto, S., Tang, W., Taylor, J., Thakur, R., Trefethen, A., Valero, M., Van Der Steen, A., Vetter, J., Williams, P., Wisniewski, R., Yelick, K.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011)

    Article  Google Scholar 

  14. Falgout, R., Meier-Yang, U.: hypre: a library of high performance preconditioners. Comput. Sci.-ICCS 2002, 632–641 (2002)

    MATH  Google Scholar 

  15. Gerya, T.: Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  16. Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study for Stokes solvers at the extreme scale. J. Comput Sci. 17, part 3, 509 – 521 (2016). doi:10.1016/j.jocs.2016.06.006. Recent Advances in Parallel Techniques for Scientific Computing

  17. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Performance and scalability of hierarchical hybrid multigrid solvers for stokes systems. SIAM J. Sci. Comput. 37(2), C143–C168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., Wohlmuth, B.: Towards textbook efficiency for parallel multigrid. Numer. Math. Theory Methods Appl. 8(1), 22–46 (2015). doi:10.4208/nmtma.2015.w10si

    Article  MathSciNet  MATH  Google Scholar 

  19. Gmeiner, B., Waluga, C., Wohlmuth, B.: Local mass-corrections for continuous pressure approximations of incompressible flow. SIAM J. Numer. Anal. 52(6), 2931–2956 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grand, S.P., van der Hilst, R.D., Widiyantoro, S.: Global seismic tomography: a snapshot of convection in the earth. GSA Today 7, 1–7 (1997)

    Google Scholar 

  21. Gross, S., Reusken, A.: Numerical Methods for Two-phase Incompressible Flows, vol. 40. Springer, Berlin (2011)

    MATH  Google Scholar 

  22. Hager, B., Clayton, R.: Mantle convection. In: Peltier, W.R. (ed.) Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid, pp. 657–764. Gordon and Breach, New York (1989)

  23. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a Stokes interface problem. Appl. Numer. Math. 85, 90–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hartley, R., Roberts, G., White, N., Richardson, C.: Transient convective uplift of an ancient buried landscape. Nat. Geosci. 4, 562–565 (2011)

    Article  Google Scholar 

  25. Haskell, N.A.: The motion of a fluid under a surface load. Physics 6, 265–269 (1935)

    Article  MATH  Google Scholar 

  26. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22(5), 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ito, K., Li, Z.: Interface conditions for Stokes equations with a discontinuous viscosity and surface sources. Appl. Math. Lett. 19(3), 229–234 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Limache, A., Idelsohn, S., Rossi, R., Oñate, E.: The violation of objectivity in Laplace formulations of the Navier-Stokes equations. Int. J. Numer. Methods Fluids 54(6–8), 639–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Logg, A., Mardal, K.A., Wells, G.N.: DOLFIN: a C++/Python finite element library. In: Lecture Notes in Computational Science and Engineering, vol. 84, chap. 10. Springer (2012)

  31. May, D., Brown, J., Pourhiet, L.L.: A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Comput. Methods Appl. Mech. Eng. 290, 496–523 (2015). doi:10.1016/j.cma.2015.03.014

    Article  MathSciNet  Google Scholar 

  32. Mitrovica, J.X.: Haskell [1935] revisited. J. Geophys. Res. 101, 555–569 (1996)

    Article  Google Scholar 

  33. Müller, E.H., Scheichl, R.: Massively parallel solvers for elliptic partial differential equations in numerical weather and climate prediction. Q. J. R. Meteorol. Soc. 140(685), 2608–2624 (2014)

    Article  Google Scholar 

  34. Müller, R.D., Sdrolias, M., Gaina, C., Roest, W.R.: Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, 1525–2027 (2008)

    Article  Google Scholar 

  35. Neff, P., Pauly, D., Witsch, K.J.: Poincaré meets Korn via Maxwell: extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258(4), 1267–1302 (2015)

    Article  MATH  Google Scholar 

  36. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84, 2059–2081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Notay, Y., Napov, A.: A massively parallel solver for discrete Poisson-like problems. J. Comput. Phys 281(C), 237–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Olshanskii, M.A., Reusken, A.: Analysis of a Stokes interface problem. Numer. Math. 103(1), 129–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Parnell-Turner, R., White, N., Henstock, T., Murton, B., Maclennan, J., Jones, S.M.: A continuous 55 million year record of transient mantle plume activity beneath Iceland. Nat. Geosci. 7, 914–919 (2014)

    Article  Google Scholar 

  40. Pironneau, O.: Finite Element Methods for Fluids. Wiley, Chichester (1989)

    MATH  Google Scholar 

  41. Pompe, W.: Counterexamples to Korn’s inequality with non-constant rotation coefficients. Math. Mech. Solids 16, 172–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Clarendon Press, Wotton-under-Edge (1999)

    MATH  Google Scholar 

  43. Rannacher, R.: On the numerical solution of the incompressible Navier-Stokes equations. ZAMM - J. Appl. Math. Mech. / Z. Angew. Math. Mech. 73(9), 203–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Röhrig-Zöllner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, A., Basermann, A., Hager, G., Wellein, G., Fehske, H.: Increasing the performance of the Jacobi-Davidson method by blocking. SIAM J. Sci. Comput. 37(6), C697–C722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rudi, J., Malossi, A., Isaac, T., Stadler, G., Gurnis, M., Staar, P., Ineichen, Y., Bekas, C., Curioni, A., Ghattas, O.: An extreme-scale implicit solver for complex PDEs: Highly heterogeneous flow in Earth’s mantle. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 5:1–5:12 (2015)

  46. Schöberl, J., Zulehner, W.: On Schwarz-type smoothers for saddle point problems. Numer. Math. 95(2), 377–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Modélisation mathématique et analyse numérique 19(1), 111–143 (1985)

    MathSciNet  MATH  Google Scholar 

  49. Stixrude, L., Lithgow-Bertelloni, C.: Thermodynamics of mantle minerals - I. Physical properties. Geophys. J. Int. 162, 610–632 (2005)

    Article  Google Scholar 

  50. Weismüller, J., Gmeiner, B., Ghelichkhan, S., Huber, M., John, L., Wohlmuth, B., Rüde, U., Bunge, H.P.: Fast asthenosphere motion in high-resolution global mantle flow models. Geophys. Res. Lett. 42(18), 7429–7435 (2015)

    Article  Google Scholar 

  51. Zhang, S.: A new family of stable mixed finite elements for the 3d Stokes equations. Math. Comput. 74(250), 543–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71(238), 479–505 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Waluga.

Additional information

This work was supported (in part) by the German Research Foundation (DFG) through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) and through WO671/11-1. The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of the supercomputer JUQUEEN at Jülich Supercomputing Centre (JSC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, M., Rüde, U., Waluga, C. et al. Surface Couplings for Subdomain-Wise Isoviscous Gradient Based Stokes Finite Element Discretizations. J Sci Comput 74, 895–919 (2018). https://doi.org/10.1007/s10915-017-0470-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0470-3

Keywords

Navigation