Skip to main content
Log in

About the Modeling of the Indentation of a Virus Shell: The Role of the Shape of the Probe

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article studies the effect of the geometry of the probe on the nanoindentation of a virus. Theoretical continuum models and numerical simulations are presented for two different probes with different shapes, namely cylindrical probes with a spherical end and cylindrical probes with a flat end. The finite element method is used and the numerical results show that the use of the probe with a spherical end reflects more nonlinearity, probably due to the Hertz effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Borodich, Feodor M.: The hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)

    Article  Google Scholar 

  2. Borodich, F.M., Keer, L.M.: Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation. Proc. Math. Phys. Eng. Sci. 460(2042), 507–514 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bousquet, A., Dragnea, B., Tayachi, M., Temam, R.: Towards the modeling of nanoindentation of virus shells: do substrate adhesion and geometry matter? Phys. D Nonlinear Phenom. 336, 28–38 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bustamante, C., Macosko, J.C., Wuite, G.J.L.: Grabbing the cat by the tail: manipulating molecules one by one. Nat. Rev. Mol. Cell Biol. 1(2), 130–136 (2000)

    Article  Google Scholar 

  5. Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gmez-Herrero, J., Mateu, M.G., de Pablo, P.J.: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. 103(37), 13706–13711 (2006)

    Article  Google Scholar 

  6. Clifford, C.A., Seah, M.P.: Nanoindentation measurement of youngs modulus for compliant layers on stiffer substrates including the effect of poissons ratios. Nanotechnology 20(14), 145708 (2009)

    Article  Google Scholar 

  7. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin-New York (1976)

    Book  MATH  Google Scholar 

  8. Finkin, E.F.: The determination of young’s modulus from the indentation of rubber sheets by spherically tipped indentors. Wear 19(3), 277–286 (1972)

    Article  Google Scholar 

  9. Ford, L.H.: Estimate of the vibrational frequencies of spherical virus particles. Phys. Rev. E Stat. Nonlinear Soft. Matter. Phys. 67, 1539–3755 (2003)

    Article  Google Scholar 

  10. Gibbons, M.M., Klug, W.S.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007)

    Article  Google Scholar 

  11. Goodman, L.E., Keer, L.M.: The contact stress problem for an elastic sphere indenting an elastic cavity. Int. J.Solids Struct. 1(4), 407–415 (1965)

    Article  Google Scholar 

  12. Hernando-Perez, M., Zeng, C., Delalande, L., Tsvetkova, I.B., Bousquet, A., Tayachi-Pigeonnat, M., Temam, R., Dragnea, B.: Nanoindentation of isometric viruses on deterministically corrugated substrates. J. Phys. Chem. B 120(2), 340–347 (2016)

    Article  Google Scholar 

  13. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  14. Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. In: SIAM, Studies in Applied and Numerical Mathematics (1988)

  15. Lev, D., Lifshitz, E.M.: Theory of elasticity, vol. 7. Course of theoretical. Physics 3, 109 (1986)

    Google Scholar 

  16. Lawn, B.R.: Indentation of ceramics with spheres: a century after hertz. J. Am. Ceram. Soc. 81(8), 1977–1994 (1998)

    Article  Google Scholar 

  17. Lin, D.C., Shreiber, D.I., Dimitriadis, E.K., Horkay, F.: Spherical indentation of soft matter beyond the hertzian regime: numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 8(5), 345–358 (2009)

    Article  Google Scholar 

  18. Liu, D.X., Zhang, Z.D., Sun, L.Z.: Nonlinear elastic load-displacement relation for spherical indentation on rubberlike materials. J. Mater. Res. 25(11), 2197–2202 (2010)

    Article  Google Scholar 

  19. Long, R., Hall, M.S., Mingming, W., Hui, C.-Y.: Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys. J. 101(3), 643–650 (2011)

    Article  Google Scholar 

  20. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  21. Mateu, M.G.: Structure and Physics of Viruses. An Integrated Textbook, vol. 68. Springer, Dordrecht (2013)

    Book  Google Scholar 

  22. Mesarovic, S.D.J., Fleck, N.A.: Spherical indentation of elastic–plastic solids. Proc. Math. Phys. Eng. Sci 455(1987), 2707–2728 (1999)

    Article  MATH  Google Scholar 

  23. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. 103(16), 6184–6189 (2006)

    Article  Google Scholar 

  24. Montmitonnet, P., Edlinger, M.L., Felder, E.: Finite element analysis of elastoplastic indentation: part II-application to hard coatings. J. Tribol. 115(1), 15–19 (1993)

    Article  MATH  Google Scholar 

  25. Rodriguez, J., Garrido, M.A.: Maneiro. A procedure to prevent pile up effects on the analysis of spherical indentation data in elastic-plastic materials. Mech. Mater. 39(11), 987–997 (2007)

    Article  Google Scholar 

  26. Roos, W.H.: How to perform a nanoindentation experiment on a virus. Single Molecule Analysis. Methods in Molecular Biology, vol. 783, pp. 251–264. Humana Press, New York City (2011)

    Chapter  Google Scholar 

  27. Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6(10), 733–743 (2010)

    Article  Google Scholar 

  28. Roos, W.H., Gibbons, M.M., Arkhipov, A., Uetrecht, C., Watts, N.R., Wingfield, P.T., Steven, A.C., Heck, A.J.R., Schulten, K., Klug, W.S., Wuite, G.J.L.: Squeezing protein shells: how continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophys. J. 99(4), 1175–1181 (2010)

    Article  Google Scholar 

  29. Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  30. Twarock, R.: Mathematical virology: a novel approach to the structure and assembly of viruses. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 364(1849), 3357–3373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sampath, S.K., Narasimhan, R.: A numerical analysis of spherical indentation response of thin hard films on soft substrates. Int. J. Solids Struct. 43(20), 6180–6193 (2006)

    Article  MATH  Google Scholar 

  32. Vaughan, R., Tragesser, B., Ni, P., Ma, X., Dragnea, B., Kao, C.C.: The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process. J. Virol. 88(11), 64836491 (2014)

    Article  Google Scholar 

  33. Zhu X. Tutorial on Hertz Contact Stress. https://wp.optics.arizona.edu/optomech/wp-content/uploads/sites/53/2016/10/OPTI-521-Tutorial-on-Hertz-contact-stress-Xiaoyin-Zhu.pdf (2012)

Download references

Acknowledgements

This research was supported in part by the National Science Foundation under the Grants NSF-DMS-1510249, by the Research Fund of Indiana University. The authors thank Pierre Suquet for introducing them to the Hertz effect, and Bogdan Dragnea for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Temam.

Additional information

This article is dedicated to Chi-Wang Shu on the occasion of his 60th birthday, with friendship and much appreciation for his scientific contributions and for his services to the community.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Temam, R. About the Modeling of the Indentation of a Virus Shell: The Role of the Shape of the Probe. J Sci Comput 73, 783–796 (2017). https://doi.org/10.1007/s10915-017-0481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0481-0

Keywords

Navigation