Skip to main content
Log in

A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new type of finite difference weighted essentially non-oscillatory (WENO) schemes for hyperbolic conservation laws was designed in Zhu and Qiu (J Comput Phys 318:110–121, 2016), in this continuing paper, we extend such methods to finite volume version in multi-dimensions. There are two major advantages of the new WENO schemes superior to the classical finite volume WENO schemes (Shu, in: Quarteroni (ed) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, CIME subseries, Springer, Berlin, 1998), the first is the associated linear weights can be any positive numbers with only requirement that their summation equals one, and the second is their simplicity and easy extension to multi-dimensions in engineering applications. The new WENO reconstruction is a convex combination of a fourth degree polynomial with two linear polynomials defined on unequal size spatial stencils in a traditional WENO fashion. These new fifth order WENO schemes use the same number of cell average information as the classical fifth order WENO schemes Shu (1998), could get less absolute numerical errors than the classical same order WENO schemes, and compress nonphysical oscillations nearby strong shocks or contact discontinuities. Some benchmark tests are performed to illustrate the capability of these schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114, 45–58 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.D.: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228, 2480–2516 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Capdeville, G.: A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977–3014 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casper, J.: Finite-volume implementation of high-order essentially nonoscillatory schemes in two dimensions. AIAA J. 30, 2829–2835 (1992)

    Article  MATH  Google Scholar 

  7. Casper, J., Atkins, H.-L.: A finite-volume high-order ENO scheme for two-dimensional hyperbolic systems. J. Comput. Phys. 106, 62–76 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67, 1219–1246 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693–723 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Friedrichs, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194–212 (1998)

    Article  MathSciNet  Google Scholar 

  13. Godunov, S.K.: A finite-difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Matthematicheskii sbornik 47, 271–290 (1959)

    MATH  Google Scholar 

  14. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harten, A.: Preliminary results on the extension of ENO schemes to two-dimensional problems. In: Carasso, C., et al. (eds.) Proceedings, International Conference on Nonlinear Hyperbolic Problems, Saint-Etienne, 1986. Lecture Notes in Mathematics, pp. 23–40. Springer, Berlin (1987)

  16. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–323 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hu, C.Q., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kolb, O.: On the full and global accuracy of a compact third order WENO scheme. SIAM J. Numer. Anal. 52(5), 2335–2355 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws, M2AN. Math. Model. Numer. Anal. 33, 547–571 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Qiu, J., Shu, C.-W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontiuous Galerkin method II: two dimensional case. Comput. Fluids 34, 642–663 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66, 692–724 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shi, J., Hu, C.Q., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  29. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, CIME subseries. Springer, Berlin (1998)

  30. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sod, G.A.: A survey of several finite difference methods for systems of non-linear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  32. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  34. Zhang, Y.T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)

    MATH  MathSciNet  Google Scholar 

  35. Zhu, J., Zhong, X., Shu, C.-W., Qiu, J.: Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes. J. Comput. Phys. 248, 200–220 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

The research of J. Zhu is partly supported by NSFC Grant 11372005 and the State Scholarship Fund of China for studying abroad, the research of J. Qiu is partly supported by NSFC Grants 11571290, 91530107 and NSFA Grant U1630247.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Qiu, J. A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws. J Sci Comput 73, 1338–1359 (2017). https://doi.org/10.1007/s10915-017-0486-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0486-8

Keywords

Mathematics Subject Classification

Navigation