Skip to main content
Log in

High Resolution Finite Volume Scheme Based on the Quintic Spline Reconstruction on Non-uniform Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a compact quintic spline reconstruction for finite volume method on non-uniform structured grids. The primitive function of a dependent variable is reconstructed by a piece-wise quintic polynomial by requiring the derivatives up to fourth order being continuous at the cell interfaces. This procedure results in a block tridiagonal system of linear equations which can be solved efficiently by incorporating certain boundary closure relations. There are some distinct features in the quintic spline reconstruction. Firstly, the reconstruction stencil is compact; Secondly, the reconstruction can be applied on arbitrary non-uniform grids; and finally, the reconstruction is continuous at cell interface without the need of a Riemann solver. To stabilize the scheme, the sixth order artificial viscosity is introduced. The quintic spline reconstruction achieves sixth-order accuracy on uniform grids without artificial viscosity and fifth-order accuracy on both uniform and non-uniform grids when artificial viscosity is added. The splined scheme is blended with shock-capturing WENO scheme to suppress non-physical oscillations near discontinuities. Numerical results demonstrate the accuracy, robustness and efficiency of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Adams, N., Shariff, K.: A high-resolution hybrid compact-eno scheme for shock-turbulence interaction problems. J. Comput. Phys. 127(1), 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batista, M.: A cyclic block-tridiagonal solver. Adv. Eng. Softw. 37(2), 69–74 (2006)

    Article  Google Scholar 

  3. Butcher, J.C.: On Runge–Kutta processes of high order. J. Aust. Math. Soc. 4(02), 179–194 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charney, J.G., Fjörtoft, R., Neumann, J.V.: Numerical integration of the barotropic vorticity equation. Tellus 2(4), 237–254 (1950)

    Article  MathSciNet  Google Scholar 

  5. Cheong, C., Lee, S.: Grid-optimized dispersion-relation-preserving schemes on general geometries for computational aeroacoustics. J. Comput. Phys. 174(1), 248–276 (2001)

    Article  MATH  Google Scholar 

  6. Daru, V., Tenaud, C.: Evaluation of tvd high resolution schemes for unsteady viscous shocked flows. Comput. Fluids 30(1), 89–113 (2000)

    Article  MATH  Google Scholar 

  7. Deng, X., Mao, M., Tu, G., Liu, H., Zhang, H.: Geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 230(4), 1100–1115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gamet, L., Ducros, F., Nicoud, F., Poinsot, T., et al.: Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows. Int. J. Numer. Methods Fluids 29(2), 159–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, L., Zhang, J.: High accuracy iterative solution of convection diffusion equation with boundary layers on nonuniform grids. J. Comput. Phys. 171(2), 560–578 (2001)

    Article  MATH  Google Scholar 

  10. Gupta, M.M., Manohar, R.P., Stephenson, J.W.: High-order difference schemes for two-dimensional elliptic equations. Numer. Methods Partial Differ. Equ. 1(1), 71–80 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jameson, A., Schmidt, W., Turkel, E., et al.: Numerical solutions of the euler equations by finite volume methods using Runge–Kutta time-stepping schemes. AIAA Pap. 1259, 1981 (1981)

    Google Scholar 

  12. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted eno schemes. Tech. rep, DTIC Document (1995)

  13. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized weno scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220(1), 270–289 (2006)

    Article  MATH  Google Scholar 

  15. Martinelli, L.: Calculations of viscous flows with a multigrid method. Tech. rep., Princeton Univ., NJ (USA) (1987)

  16. McCartin, B.J.: Computation of exponential splines. SIAM J. Sci. Stat. Comput. 11(2), 242–262 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pereira, J., Kobayashi, M., Pereira, J.: A fourth-order-accurate finite volume compact method for the incompressible Navier–Stokes solutions. J. Comput. Phys. 167(1), 217–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pirozzoli, S.: Conservative hybrid compact-weno schemes for shock-turbulence interaction. J. Comput. Phys. 178(1), 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ren, Y.X., Zhang, H., et al.: A characteristic-wise hybrid compact-weno scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192(2), 365–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roe, P.L.: Approximate riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, M., Zhang, Z., Niu, X.: A new way for constructing high accuracy shock-capturing generalized compact difference schemes. Comput. Methods Appl. Mech. Eng. 192(25), 2703–2725 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253 ICASE Report No. 97-65 (1997)

  23. Shukla, R.K., Tatineni, M., Zhong, X.: Very high-order compact finite difference schemes on non-uniform grids for incompressible Navier–Stokes equations. J. Comput. Phys. 224(2), 1064–1094 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shukla, R.K., Zhong, X.: Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation. J. Comput. Phys. 204(2), 404–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Spotz, W.: Formulation and experiments with high-order compact schemes for non-uniform grids. Int. J. Numer. Methods Heat Fluid Flow 8(3), 288–303 (1998)

  26. Sun, Z.S., Ren, Y.X., Larricq, C., Zhang, S.Y., Yang, Y.C.: A class of finite difference schemes with low dispersion and controllable dissipation for dns of compressible turbulence. J. Comput. Phys. 230(12), 4616–4635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, Z.S., Ren, Y.X., Zha, B.I., Zhang, S.Y.: High order boundary conditions for high order finite difference schemes on curvilinear coordinates solving compressible flows. J. Sci. Comput. 65(2), 790–820 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Swanson, R.C., Turkel, E.: On central-difference and upwind schemes. J. Comput. Phys. 101(2), 292–306 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tam, C.K., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107(2), 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, New York (2013)

    Google Scholar 

  31. Toro, E.F., Titarev, V.A.: Derivative riemann solvers for systems of conservation laws and ader methods. J. Comput. Phys. 212(1), 150–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Q., Ren, Y.X.: An accurate and robust finite volume scheme based on the spline interpolation for solving the euler and Navier–Stokes equations on non-uniform curvilinear grids. J. Comput. Phys. 284, 648–667 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, R., Feng, H., Spiteri, R.J.: Observations on the fifth-order weno method with non-uniform meshes. Appl. Math. Comput. 196(1), 433–447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Weinan, E., Shu, C.W.: A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow. J. Comput. Phys. 110(1), 39–46 (1994)

    Article  MATH  Google Scholar 

  35. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhong, X., Tatineni, M.: High-order non-uniform grid schemes for numerical simulation of hypersonic boundary-layer stability and transition. J. Comput. Phys. 190(2), 419–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, Q., Yao, Z., He, F., Shen, M.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comput. Phys. 227(2), 1306–1339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Projects 11672160 of NSFC and 2016YFA0401200 of National Key Research and Development Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Xin Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WF., Ren, YX., Wang, Q. et al. High Resolution Finite Volume Scheme Based on the Quintic Spline Reconstruction on Non-uniform Grids. J Sci Comput 74, 1816–1852 (2018). https://doi.org/10.1007/s10915-017-0524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0524-6

Keywords

Navigation