Skip to main content
Log in

Stormer-Numerov HDG Methods for Acoustic Waves

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce and analyze the first energy-conservative hybridizable discontinuous Galerkin method for the semidiscretization in space of the acoustic wave equation. We prove optimal convergence and superconvergence estimates for the semidiscrete method. We then introduce a two-step fourth-order-in-time Stormer-Numerov discretization and prove energy conservation and convergence estimates for the fully discrete method. In particular, we show that by using polynomial approximations of degree two, convergence of order four is obtained. Numerical experiments verifying that our theoretical orders of convergence are sharp are presented. We also show experiments comparing the method with dissipative methods of the same order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13, 564–576 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezzi, F., Douglas Jr., J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chung, E., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Fu, G., Sayas, F.J.: Superconvergence by M-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comput. 86, 1609–1641 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Quenneville-Bélair, V.: Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math. Comput. 83, 65–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A priori estimates for mixed finite element methods for the wave equation. Comput. Methods Appl. Mech. Engrg. 82, 205–222 (1990). Reliability in computational mechanics (Austin, TX, 1989)

  11. Cowsar, L.C., Dupont, T.F., Wheeler, M.F.: A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal. 33, 492–504 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dupont, T.: \(\text{ L }^{2}\)-estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal. 10, 880–889 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ezziani, A., Joly, P.: Local time stepping and discontinuous Galerkin methods for symmetric first order hyperbolic systems. J. Comput. Appl. Math. 234, 1886–1895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36, 935–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geveci, T.: On the application of mixed finite element methods to the wave equations. RAIRO Modél. Math. Anal. Numér. 22, 243–250 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Internat. J. Numer. Methods Fluids 72, 1244–1262 (2013)

    Article  MathSciNet  Google Scholar 

  17. Griesmaier, R., Monk, P.: Discretization of the wave equation using continuous elements in time and a hybridizable discontinuous Galerkin method in space. J. Sci. Comput. 58, 472–498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44, 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jenkins, E.W., Rivière, B., Wheeler, M.F.: A priori error estimates for mixed finite element approximations of the acoustic wave equation. SIAM J. Numer. Anal. 40, 1698–1715 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Makridakis, C.G.: High-order fully discrete methods for the equations of elastic wave propagation with absorbing boundary conditions. IMA J. Numer. Anal. 15, 377–404 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22(23), 443–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230, 3695–3718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Størmer, C.: Méthode d’intégration numérique des équations différentielles ordinaires, É. Privat (1921)

  24. van der Houwen, P.J., Sommeijer, B.P.: Diagonally implicit Runge–Kutta–Nyström methods for oscillatory problems. SIAM J. Numer. Anal. 26, 414–429 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Sánchez.

Additional information

Bernardo Cockburn: Partially supported by the National Science Foundation (Grant DMS-1115331). Francisco-Javier Sayas: Partially supported by the National Science Foundation (Grant DMS-1216356).

An Identity Used in the Duality Argument

An Identity Used in the Duality Argument

Lemma A.1

Suppose \(\eta \) is the continuous piecewise-linear Lagrange interpolation of the values \(\{\eta ^n\}_{n=0}^{N}\) and \(\mu :[0,T]\rightarrow {\mathbb {R}}\) is a function. Then we have

$$\begin{aligned} \int _0^T\eta (t)\mu (t)dt&=\tfrac{k}{2}\eta (0)\mathrm I_k\mu (0)+k\sum _{n=1}^{N-1}\eta (t_n)\mathrm I_k\mu (t_n)+\tfrac{k}{2}\eta (0)\mathrm I_k\mu (0),\\ \int _0^T\dot{\eta }(t)\dot{\mu }(t)dt&=\delta _k\eta ^N\mu (T)-k\sum _{n=1}^{N-1}\mathrm D_k^2\eta ^n\mu (t_n)-\delta _k\eta ^1\mu (0). \end{aligned}$$

There result also holds for functions taking values in an inner product space, when the pointwise product is substituted by the inner product.

Proof

We have

$$\begin{aligned} \int _0^T\eta (t)\mu (t)dt&=\sum _{n=1}^{N}\Big (\eta ^n\int _{t_{n-1}}^{t_n}\tfrac{1}{k}(t-t_{n-1})\mu (t)dt+\eta ^{n-1}\int _{t_{n-1}}^{t_n}\tfrac{1}{k}(t_n-t)\mu (t)dt\Big )\\&=\eta ^N\int _{T-k}^T\tfrac{1}{k}(t-(T-k))\mu (t)dt+\sum _{n=1}^{N-1}\eta ^n\int _{t_{n-1}}^{t_n}\tfrac{1}{k}(t-t_{n-1})\mu (t)dt\\&\quad +\,\sum _{n=2}^{N}\eta ^{n-1}\int _{t_{n-1}}^{t_n}\tfrac{1}{k}(t_n-t)\mu (t)dt+\eta ^0\int _0^k\tfrac{1}{k}(k-t)\mu (t)dt. \end{aligned}$$

After using the definition of \(\mathrm I_k\), we get the first identity.

To obtain the second identity, note that we have

$$\begin{aligned} \int _0^T\dot{\eta }(t)\dot{\mu }(t)dt&=\sum _{n=1}^N\int _{t_{n-1}}^{t_n}\dot{\eta }(t)\dot{\mu }(t)dt =\sum _{n=1}^N\delta _k\eta ^n(\mu (t_n)-\mu (t_{n-1})), \end{aligned}$$

and the result follows after simple rearrangements. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cockburn, B., Fu, Z., Hungria, A. et al. Stormer-Numerov HDG Methods for Acoustic Waves. J Sci Comput 75, 597–624 (2018). https://doi.org/10.1007/s10915-017-0547-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0547-z

Keywords

Mathematics Subject Classification

Navigation