Skip to main content
Log in

A Convergence Analysis of the Inexact Simplified Jacobi–Davidson Algorithm for Polynomial Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The simplified Jacobi–Davidson (JD) method is a variant of the JD method without subspace acceleration. If the correction equation is solved approximately, the inexact simplified JD method is obtained. In this paper, we present a new convergence analysis of the inexact simplified JD method. The analysis applies to polynomial eigenvalue problems with simple eigenpairs. We first establish a relationship between the solution of the correction equation and the residual of the approximate eigenpair. From this relationship, we find the difference of two adjacent approximate eigenvalues bounded in terms of the residual norm of the approximate eigenpair. Then we prove the convergence of the inexact simplified JD method in terms of the residual norm of the approximate eigenpair. Depending on how accurately we solve the correction equation, the convergence rate of the inexact simplified JD may take several different forms. Numerical experiments confirm the convergence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asakura, J., Sakurai, T., Tadano, H., Ikegami, T., Kimura, K.: A numerical method for polynomial eigenvalue problems using contour integral. Jpn. J. Ind. Appl. Math. 27, 73–90 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Argonne National Laboratory, Lemont (2017)

    Google Scholar 

  3. Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39, 7:1–7:28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. 436, 3839–3863 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boisvert, B., Pozo, R., Remington, K., Miller, B., Lipman, R.: Matrix market. http://math.nist.gov/MatrixMarket (2004)

  6. Cai, X.-C., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Effenberger, C., Kressner, D.: Chebyshev interpolation for nonlinear eigenvalue problems. BIT 52, 933–951 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freitag, M., Spence, A.: Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem. Electr. Trans. Numer. Anal. 28, 40–64 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Havé, P., Masson, R., Nataf, F., Szydlarski, M., Xiang, H., Zhao, T.: Algebraic domain decomposition methods for highly heterogeneous problems. SIAM J. Sci. Comput. 35, C284–C302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hochstenbach, M.E., Sleijpen, G.L.G.: Harmonic and refined Rayleigh–Ritz for the polynomial eigenvalue problem. Numer. Linear Algebra Appl. 15, 35–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hochstenbach, M.E., Notay, Y.: Controlling inner iterations in the Jacobi–Davidson method. SIAM J. Matrix Anal. Appl. 31, 460–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hwang, F.-N., Wei, Z.-H., Huang, T.-M., Wang, W.: A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation. J. Comput. Phys. 229, 2932–2947 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jia, Z., Wang, Z.: A convergence analysis of the inexact Rayleigh quotient iteration and simplified Jacobi-Davidson method for the large Hermitian eigenproblem. Sci. China Ser. A Math. 51, 2205–2216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, Z., Li, C.: Inner iterations in the shift-invert residual Arnoldi method and the Jacobi–Davidson method. Sci. China Ser. A Math. 57, 1733–1752 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, Z., Li, C.: Harmonic and refined harmonic shift-invert residual Arnoldi and Jacobi–Davidson methods for interior eigenvalue problems. J. Comput. Appl. Math. 282, 83–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liao, B.-S., Bai, Z., Lee, L.-Q., Ko, K.: Nonlinear Rayleigh–Ritz iterative method for solving large scale nonlinear eigenvalue problems. Taiwan. J. Math. 14, 869–883 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meerbergen, K., Schröder, C., Voss, H.: A Jacobi–Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations. Numer. Linear Algebra Appl. 20, 852–868 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Roman, J.E., Campos, C., Romero, E., Tomas, A.: SLEPc Users Manual v. 3.5.3. Universitat Politècnica de València (2015)

  20. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  22. Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36, 595–633 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sleijpen, G.L.G., van der Vorst, H.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Szyld, D.B., Xue, F.: Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems. Numer. Math. 123, 333–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Szyld, D.B., Xue, F.: Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms. Numer. Math. 129, 353–381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Szyld, D.B., Xue, F.: Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. II. Accelerated algorithms. Numer. Math. 129, 382–403 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Tang, J.M., Nabben, R., Vuik, C., Erlangga, Y.A.: Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput. 39, 340–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  29. Van Beeumen, R., Meerbergen, K., Michiels, W.: A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 35, A327–A350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Van Beeumen, R., Meerbergen, K., Michiels, W.: Compact rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 820–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Voss, H.: A new justification of the Jacobi–Davidson method for large eigenproblems. Linear Algebra Appl. 424, 448–455 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhao, T.: A spectral analysis of subspace enhanced preconditioners. J. Sci. Comput. 66, 435–457 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, T., Hwang, F.-N., Cai, X.-C.: Parallel two-level domain decomposition based Jacobi–Davidson algorithms for pyramidal quantum dot simulation. Comput. Phys. Commun. 204, 74–81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their helpful comments that improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T. A Convergence Analysis of the Inexact Simplified Jacobi–Davidson Algorithm for Polynomial Eigenvalue Problems. J Sci Comput 75, 1207–1228 (2018). https://doi.org/10.1007/s10915-017-0582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0582-9

Keywords

Navigation