Skip to main content
Log in

A Fast Algorithm for Deconvolution and Poisson Noise Removal

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Poisson noise removal problems have attracted much attention in recent years. The main aim of this paper is to study and propose an alternating minimization algorithm for Poisson noise removal with nonnegative constraint. The algorithm minimizes the sum of a Kullback-Leibler divergence term and a total variation term. We derive the algorithm by utilizing the quadratic penalty function technique. Moreover, the convergence of the proposed algorithm is also established under very mild conditions. Numerical comparisons between our approach and several state-of-the-art algorithms are presented to demonstrate the efficiency of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, M., Zhang, X., Shao, Q.: Adaptive correction procedure for TVL1 image deblurring under impulse noise. Inverse Probl. 32(8), 085004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N.: Positron Emission Tomography-Basic Sciences. Springer, New York (2005)

    Book  Google Scholar 

  5. Bardsley, J.M., Goldes, J.: An iterative method for edge-preserving MAP estimation when data-noise is Poisson. SIAM J. Sci. Comput. 32(1), 171–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  7. Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with Poisson data: from cells to galaxies. Inverse Probl. 25(12), 123006 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Browder, F.E., Petryshyn, W.V.: The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 72(3), 571–575 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brune, C., Sawatzky, A., Burger, M.: Primal and dual Bregman methods with application to optical nanoscopy. Int. J. Comput. Vis. 92(2), 211–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burger, M., Sawatzky, A., Steidl, G.: First order algorithms in variational image processing. In: Glowinski, R., Osher, S., Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science, and Engineering, pp. 345–407. Springer, Switzerland (2016)

    Chapter  Google Scholar 

  11. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Combettes, P., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csiszar, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dey, N., Blanc-Feraud, L., Zimmer, C., Roux, P., Kam, Z., Olivo-Marin, J.-C., Zerubia, J.: Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Micros. Res. Tech. 69(4), 260–266 (2006)

    Article  Google Scholar 

  15. Figueiredo, M.A.T., Bioucas-Dias, J.M.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19(12), 3133–3145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  17. Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990)

    Article  Google Scholar 

  19. Guo, X., Li, F., Ng, M.K.: A fast \(\ell \)1-TV algorithm for image restoration. SIAM J. Sci. Comput. 31(3), 2322–2341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hohage, T., Werner, F.: Inverse problems with Poisson data: statistical regularization theory, applications and algorithms. Inverse Probl. 32(9), 093001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Y.-M., Lu, D.-Y., Zeng, T.: Two-step approach for the restoration of images corrupted by multiplicative noise. SIAM J. Sci. Comput. 35(6), A2856–A2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, Y.-M., Ng, M.K., Wen, Y.-W.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7(2), 774–795 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  24. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79(6), 745–754 (1974)

    Article  Google Scholar 

  25. Ma, L., Ng, M.K., Yu, J., Zeng, T.: Efficient box-constrained TV-type-\(\ell ^1\) algorithms for restoring images with impulse noise. J. Comput. Math. 31(3), 249–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Molina, R.: On the hierarchical Bayesian approach to image restoration: applications to astronomical images. IEEE Trans. Pattern Anal. Mach. Intell. 16(11), 1122–1128 (1994)

    Article  Google Scholar 

  27. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, London (2004)

    MATH  Google Scholar 

  28. Ng, M.K., Chan, R.H., Tang, W.-C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21(3), 851–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ollinger, J.M., Fessler, J.A.: Positron-emission tomography. IEEE Signal Process. Mag. 14(1), 43–55 (1997)

    Article  Google Scholar 

  30. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73(4), 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Panin, V.Y., Zeng, G.L., Gullberg, G.T.: Total variation regulated EM algorithm. IEEE Trans. Nuclear Sci. 46(6), 2202–2210 (1999)

    Article  Google Scholar 

  32. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. A 62(1), 55–59 (1972)

    Article  Google Scholar 

  33. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  34. Rudin, L.I., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of IEEE International Conference Image Process, vol 1, pp. 31–35. Austin, TX, (1994)

  35. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Setzer, S., Steild, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Rep. 21(3), 193–199 (2010)

    Article  Google Scholar 

  37. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  38. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in astronomy: A review. Publ. Astron. Soc. Pac. 114(800), 1051–1069 (2002)

    Article  Google Scholar 

  40. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Teuber, T., Steidl, G., Chan, R.H.: Minimization and parameter estimation for seminorm regularization models with I-divergence constraints. Inverse Probl. 29(3), 035007 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, Washington, DC (1977)

    MATH  Google Scholar 

  43. Vio, R., Bardsley, J., Wamsteker, W.: Least-squares methods with Poissonian noise: Analysis and comparison with the Richardson-Lucy algorithm. Astron. Astrophys. 436(2), 741–755 (2005)

    Article  Google Scholar 

  44. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wen, Y.-W., Chan, R.H., Zeng, T.: Primal-dual algorithms for total variation based image restoration under Poisson noise. Sci. China Math. 59(1), 141–160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wen, Y.-W., Ng, M.K., Huang, Y.-M.: Efficient total variation minimization methods for color image restoration. IEEE Trans. Image Process. 17(11), 2081–2088 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zeng, T., Li, X., Ng, M.K.: Alternating minimization method for total variation based wavelet shrinkage model. Commun. Comput. Phys. 8(5), 976–994 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, X., Javidi, B., Ng, M.K.: Automatic regularization parameter selection by generalized cross-validation for total variational Poisson noise removal. Applied Opt. 56(9), D47–D51 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their careful reading of this paper and their valuable suggestions, which have helped improve the quality of this paper substantially. The authors would also like to thank Professor You-Wei Wen for sending us the code of the primal dual algorithm in [45].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongjun Zhang.

Additional information

Xiongjun Zhang: The research of this author was supported in part by the Fundamental Research Funds for the Central Universities under Grant 230-20205170463-610.

Michael K. Ng: The research of this author was supported in part by the HKRGC GRF 1202715, 12306616, 12200317 and HKBU RC-ICRS/16-17/03.

Minru Bai: The research of this author was supported in part by the National Science Foundation of China under Grant 11571098.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ng, M.K. & Bai, M. A Fast Algorithm for Deconvolution and Poisson Noise Removal. J Sci Comput 75, 1535–1554 (2018). https://doi.org/10.1007/s10915-017-0597-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0597-2

Keywords

Mathematics Subject Classification

Navigation