Skip to main content
Log in

A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach for model order reduction problems, with multiple inputs and multiple outputs, named: Adaptive Global Tangential Arnoldi Algorithm. This method is based on a generalization of the global Arnoldi algorithm. The selection of the shifts and the tangent directions are done with an adaptive procedure. We give some algebraic properties and present some numerical examples to show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Oberwolfach model reduction benchmark collection 2003. http://www.imtek.de/simulation/benchmark.

  2. Oberwolfach model reduction benchmark collection 2003. http://www.imtek.de/simulation/benchmark.

References

  1. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis, K. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 2–58. Springer-Verlag, New York (2010)

  2. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barkouki, H., Bentbib, A.H., Jbilou, K.: An adaptive rational block Lanczos-type algorithm for model reduction of large scale dynamical systems. SIAM J. Sci. Comput. 67, 221–236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beattie, C.A., Gugercin, S.: Interpolation projection methods for structure-preserving model reduction. Syst. Control Lett. 58, 225–232 (2009)

    Article  MATH  Google Scholar 

  5. Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Villemagne, C., Skelton, R.: Model reductions using a projection formulation. Int. J. Control 46, 2141–2169 (1987)

    Article  MathSciNet  Google Scholar 

  7. Druskin, V., Lieberman, C., Zaslavsky, M.: On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM J. Sci. Comput. 32, 2485–2496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Druskin, V., Simoncini, V., Zaslavsky, M.: Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM J. Matrix Anal. Appl. 35, 476–498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feldmann, P., Freund, R.: Efficient linear circuit analysis by Padé-approximation via the Lanczos process. IEEE Trans. Comput. Aided Des. 14, 639–649 (1995)

    Article  Google Scholar 

  11. Gallivan, K., Vandendorpe, A., Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM. J. Matrix Anal. Appl. 26, 328–349 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gallivan, K., Grimme, E., Van Dooren, P.: Asymptotic waveform evaluation via a Lanczos method. Appl. Math. Lett. 7, 75–80 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L1-errors bounds. Int. J. Control 39, 1115–1193 (1984)

    Article  MATH  Google Scholar 

  14. Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, Coordinated Science Laboratory, University of Illinois at Urbana–Champaign (1997)

  15. Gugercin, S., Antoulas, A.C., Bedrossian, N.: Approximation of the international space station 1R and 12A models. In: Proceedings of the 40th CDC (2001)

  16. Guttel, S., Knizhnerman, L.: Automated parameter selection for rational Arnoldi approximation of Markov functions. Proc. Appl. Math. Mecha. 11, 15–18 (2011)

    Article  Google Scholar 

  17. Laub, A.J., Heath, M.T., Paige, C.C., Ward, R.C.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115–122 (1987)

    Article  MATH  Google Scholar 

  18. Mehrmann, V., Penzl, T.: Benchmark collections in SLICOT. Technical Report SLWN1998–5, SLICOT Working Note, ESAT, KU Leuven, K. Mercierlaan 94, Leuven-Heverlee 3100, Belgium (1998). http://www.win.tue.nl/niconet/NIC2/reports.html

  19. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26, 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Olshevsky, V., Shokrollahi, A.: A superfast algorithm for confluent rational tangential interpolation problem via matrix-vector multiplication for confluent Cauchy-like matrices, in structured matrices in mathematics, computer science, and engineering. Contemp. Math. 280, 32–46 (2001)

    MATH  Google Scholar 

  21. Penzl, T.: LYAPACK-A MATLAB toolbox for Large Lyapunov and Riccati Equations, Model reduction problems, and linear-quadratic optimal control problems, http://www.tuchemintz.de/sfb393/lyapack

  22. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems. II: Matrix pairs. Lin. Alg. Appl. 197–198, 283–295 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Lin. Alg. Appl. 58, 391–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ruhe, A.: The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: complex shifts for real matrices. BIT Numer. Math. 34, 165–176 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34, 729–733 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Dooren, P., Gallivan, K.A., Absil, P.: \({H}_2\)-optimal model reduction with higher order poles. SIAM J. Matrix Anal. Appl. 31, 2738–2753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yousuff, A., Skelton, R.: Covariance equivalent realizations with applications to model reduction of large-scale systems. Control Dynam. Syst. 22, 273–348 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for valuable remarks and helpful suggestions that allow us to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentbib, A.H., Jbilou, K. & Kaouane, Y. A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems. J Sci Comput 75, 1614–1632 (2018). https://doi.org/10.1007/s10915-017-0601-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0601-x

Keywords

Mathematics Subject Classification

Navigation