Skip to main content
Log in

Variational Image Restoration and Segmentation with Rician Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Restoring and segmenting images corrupted by Rician noise are now challenging issues in the field of medical image processing. Our previously proposed restoration model, which is based on the statistical property of Rician noise, was proven efficient only when the standard variation of Rician noise in the image is greater than a certain positive number. The present paper further theoretically proves that this certain positive number can be replaced by zero, i.e., the standard variation of Rician noise can be any positive value. This broadens its application range. In addition, the data-fidelity term in the proposed restoration model can be applied into the famous two-stage segmentation method for segmenting images corrupted by Rician noise. In the first stage, a new variant of modified Mumford–Shah model is established with whose data-fidelity term is designed to manipulate Rician noise in the image. The strict convexity holds for this optimization model and linearized primal-dual algorithm with theoretical convergence analysis can be implemented for achieving the global optimal solution. For the second stage, partition on the optimal smooth cartoon image is done simply by thresholding. Such two-stage segmentation method is apparently more suitable for image with Rician noise compared to other state-of-art algorithms. Numerical experiments are conducted on both synthetic and real images. The results suggest that the proposed method is more favorable for image segmentation task with Rician noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 641–647 (1994)

    Article  Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

  3. Baratloo, A., Hosseini, M., Negida, A., Ashal, G.: Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emergency 3(2), 48–49 (2015)

    Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011)

    Article  MATH  Google Scholar 

  5. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40, 825–838 (2007)

    Article  MATH  Google Scholar 

  6. Cai, S., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM J. Imaging Sci. 6, 368–390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Chan, T., Golub, G., Multet, P.: A non-linear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, R., Yang, H., Zeng, T.: A two-stage image segmentation method for blurry images with poisson or multiplicative gamma noise. SIAM J. Imaging Sci. 7, 98–127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, L., Zeng, T.: A convex variational model for restoring blurred images with large Rician noise. J. Math. Imaging Vis. 53, 92–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, L., Shen, C., Zhou, Z., Maquilan, G., Thoms, K., Folkert, M., Albuquerque, K., Wang, J.: Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices. Comput. Biol. Med. 97, 30–36 (2018)

    Article  Google Scholar 

  14. Chuang, K., Tzeng, H., Chen, S., Wu, J., Chen, T.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)

    Article  Google Scholar 

  15. Condat, L.: A Primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, B., Chien, A., Shen, Z.: Frame based segmentation for medical images. Commun. Math. Sci. 9, 551–559 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  18. Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19, 3133–3145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Foi, A.: Noise estimation and removal in MR imaging: the variance-stabilization approach. In: IEEE International Symposium on Biomedical Imaging: From Nano and Macro, pp. 1809–1814 (2011)

  20. Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging. 11, 221–232 (1992)

    Article  Google Scholar 

  21. Getreuer, P., Tong, M., Vese, L.: A variational model for the restoration of MR images corrupted by blur and Rician noise. In: Advances in Visual Computing, pp. 686–698 (2011)

  22. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. J. Magn. Reson. Med. 34, 910–914 (1995)

    Article  Google Scholar 

  24. Henkelman, R.: Measurement of signal intensities in the presence of noise in MR images. J. Med. Phys. 12, 232–233 (1985)

    Article  Google Scholar 

  25. Hintermüuller, M., Laurain, A.: Multiphase Image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vis. 35, 1–22 (2009)

    Article  MathSciNet  Google Scholar 

  26. Jensen, T., Jørgensen, J., Hansen, P., Jensen, S.: Implementation of an optimal first-order method for strongly convex total variation regularization. BIT Numer. Math. 52, 329–356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kornprobst, P., Deriche, R., Aubert, G.: Image sequence analysis via partial differential equations. J. Math. Imaging Vis. 11, 5–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lézoray, O., Grady, L.: Image Processing and Analysis with Graphs: Theory and Practice. CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  29. Li, F., Ng, M., Zeng, T., Shen, C.: A multiphase image segmentation method based on fuzzy region competition. SIAM J. Imaging Sci. 3, 277–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, G., Huang, T., Liu, J., Lv, X.: Total variation with overlapping group sparsity for image deblurring under impulse noise (2013). arXiv preprint arXiv:1312.6208

  31. Mark, B., Turin, W.: Probability, Random Processes, and Statistical Analysis. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  32. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating algorithms and measuring ecological statistics. In: ICCV, pp. 416–423 (2001)

  33. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 22–26 (1985)

  34. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nowak, R.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process. 8, 1408–1419 (1999)

    Article  Google Scholar 

  36. Olver, F., Lozier, D., Boisvert, R., Clark, C.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  37. Papoulis, A.: Probability, Random Variables and Stochastic Processes, 2nd edn. McGraw-Hill, Tokyo (1984)

    MATH  Google Scholar 

  38. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  39. Pham, D., Xu, C., Prince, J.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–337 (2000)

    Article  Google Scholar 

  40. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  41. Sijbers, J., Dekker, A., Dyck, D., Raman, E.: Estimation of signal and noise from Rician distributed data. In: SPCOM-1998, pp. 140–142 (1998)

  42. Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S., Barillot, C.: Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI. In: MICCAI-2007, pp. 344–351 (2007)

  43. Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S., Barillot, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: MICCAI-2008, pp. 171–179 (2008)

  44. Wood, J., Johnson, K.: Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR. Magn. Reson. Med. 41, 631–635 (1999)

    Article  Google Scholar 

  45. Yuan, J., Bae, E., Tai, X., Boycov, Y.: A continuous max-flow approach to Potts model. In: ECCV (2010)

  46. Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: CVPR (2010)

  47. Yuan, J., Schnörr, C., Steidl, G.: Simultaneous optical flow estimation and decomposition. SIAM J. Sci. Comput. 29, 2283–2304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report 08-34 (2008)

  49. Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 884–900 (1996)

    Article  Google Scholar 

  50. Zhu, M., Wright, S., Chan, T.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47, 377–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewers and editor for providing very useful comments and suggestions. T. Zeng is supported in part by National Science Foundation of China No. 11671002, CUHK start-up and CUHK DAG 4053296.

Funding

Funding was provided by Research Grants Council, University Grants Committee (Grant No. 12302714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyong Zeng.

Appendix

Appendix

1.1 Appendix 1: Proof of Lemma 1

Proof

Based on the recurrence relation (equation (10.29.1) in [36]) for the modified Bessel function \(I_{\nu }\) as follows:

$$\begin{aligned} I_{\nu -1}(t)-I_{\nu +1}(t) = (2\nu /t)I_{\nu }(t), \end{aligned}$$
(26)

we derive \(I_2(t)=I_0(t)-\frac{2}{t}I_1(t)\). Then h(t) (when \(t\ne 0\)) can be expressed as follows:

$$\begin{aligned} h(t)=2t^{\frac{3}{2}}\left\{ 1-\frac{I_1(t)}{I_0(t)}\left[ \frac{1}{t}+\frac{I_1(t)}{I_0(t)}\right] \right\} . \end{aligned}$$
(27)

Combing equation (10.34.3) (taking \(m=0\)) and equation (10.40.10) in [36],

$$\begin{aligned} I_{\nu }(t)=\frac{e^t}{(2\pi t)^{1/2}}\left\{ \sum _{s=0}^{n-1}(-)^s \frac{a_s(\nu )}{t^s}+\delta _n(\nu ,t)\right\} -i e^{-\nu \pi i}\frac{e^{-t}}{(2 \pi t)^{1/2}}\left\{ \sum _{s=0}^{n-1} \frac{a_s(\nu )}{t^s}+\gamma _n(\nu ,t)\right\} , \end{aligned}$$

where \(|\gamma _n(\nu ,t)|\) is bounded by

$$\begin{aligned}&2\exp \left\{ \left| \left( \nu ^2-\frac{1}{4}\right) t^{-1}\right| \right\} |a_n(\nu )t^{-n}| \quad \left( |\mathrm {ph} t| \le \frac{1}{2}\pi \right) ,\\&2\chi (n)\exp \left\{ \frac{1}{2}\pi \left| \left( \nu ^2-\frac{1}{4}\right) t^{-1}\right| \right\} \left| a_n(\nu )t^{-n}\right| \quad \left( \frac{1}{2}\pi \le \left| \mathrm {ph} t\right| \le \pi \right) ,\\&4\chi (n)\exp \left\{ \pi \left| \left( \nu ^2-\frac{1}{4}\right) \left( \mathrm {Re} t\right) ^{-1}\right| \right\} \left| a_n(\nu )(\mathrm {Re} t)^{-n}\right| \quad \left( \pi \le |\mathrm {ph} t|<\frac{3}{2} \pi \right) ;\\ \end{aligned}$$

\(|\delta _n(\nu ,t)|\) is subject to the same bounds, except that the applicable sectors are respectively changed to \(-\frac{3}{2}\pi \le \mathrm {ph} t \le -\frac{1}{2}\pi ,\)       \(-\frac{1}{2}\pi \le \mathrm {ph} t \le 0,\)       \(0 \le \mathrm {ph} t <\frac{1}{2} \pi \); ph denotes phase;

$$\begin{aligned} \chi (n)=\pi ^{\frac{1}{2}}\frac{\Gamma (\frac{1}{2}l+1)}{\Gamma (\frac{1}{2}l+\frac{1}{2})}; \quad a_n(\nu )=\frac{(4\nu ^2-1)(4\nu ^2-3^2)\dots (4\nu ^2-(2n-1)^2)}{n!8^n}. \end{aligned}$$

Hence, when \(\nu =0,1\),

$$\begin{aligned} I_1(t)= & {} \frac{e^t}{(2\pi t)^{1/2}}\left\{ 1-\frac{3}{8t}-\frac{15}{128t^2}+\delta _3(1,t)+i e^{-2t}[1+\gamma _1(1,t)]\right\} := \frac{e^t}{(2\pi t)^{1/2}}P_1(t),\\ I_0(t)= & {} \frac{e^t}{(2\pi t)^{1/2}}\left\{ 1+\frac{1}{8t}+\frac{9}{128t^2}+\delta _3(0,t)-i e^{-2t}[1+\gamma _1(0,t)]\right\} := \frac{e^t}{(2\pi t)^{1/2}}P_0(t), \end{aligned}$$

with \(\chi (1)=\pi /2\), \(\chi (3)=3\pi /4\),

$$\begin{aligned} |\delta _3(\nu ,t)|\le \frac{3\pi |a_3(\nu )|}{2t^3}\exp \left\{ |\nu ^2-\frac{1}{4}|\frac{\pi }{2t}\right\} \quad \mathtt {and} \quad |\gamma _1(\nu ,t)|\le \frac{2|a_1(\nu )|}{t}\exp \left\{ |\nu ^2-\frac{1}{4}|\frac{1}{t}\right\} . \end{aligned}$$

Therefore,

$$\begin{aligned} \frac{I_1(t)}{I_0(t)}= & {} \frac{1-\frac{3}{8t}-\frac{15}{128t^2}+\delta _3(1,t)+i e^{-2t}[1+\gamma _1(1,t)]}{1+\frac{1}{8t}+\frac{9}{128t^2}+\delta _3(0,t)-i e^{-2t}[1+\gamma _1(0,t)]}\\= & {} 1-\frac{1}{2t}-\frac{1}{8t^2}+\frac{1}{t^2}R, \end{aligned}$$

where

$$\begin{aligned} R:= & {} t^2\left( \frac{I_1(t)}{I_0(t)}-1+\frac{1}{2t}+\frac{1}{8t^2}\right) =t^2\left[ \frac{P_1(t)}{P_0(t)}-1+\frac{1}{2t}+\frac{1}{8t^2}\right] \\= & {} \frac{t^2 P_1(t)-(t^2-\frac{t}{2}-\frac{1}{8})P_0(t)}{P_0(t)}. \end{aligned}$$

When \(t>4.3\),

$$\begin{aligned} |\delta _3(1,t)|<\frac{0.1478}{t^2}, \quad |\delta _3(0,t)|<\frac{0.0879}{t^2}, \quad \gamma _1(1,t)|>0.2077 \quad \mathrm {and} \quad |\gamma _1(0,t)|>0.0616. \end{aligned}$$

Hence, we have

$$\begin{aligned} |P_0(t)|= & {} \Bigg |1+\frac{1}{8t}+\frac{9}{128t^2}+\delta _3(0,t)-i e^{-2t}[1+\gamma _1(0,t)]\Bigg |\\> & {} 1+\frac{1}{8t}+\frac{9}{128t^2}-|\delta _3(0,t)|- e^{-2t}(1+|\gamma _1(0,t)|)\\> & {} 1 \quad \mathrm {for} \qquad t>4.3, \end{aligned}$$

and then

$$\begin{aligned} |R|< & {} \left| t^2 P_1(t)-\left( t^2-\frac{t}{2}-\frac{1}{8}\right) P_0(t)\right| \\< & {} t^2|\delta _3(1,t)|+t^2 \left( 1-\frac{1}{2t}-\frac{1}{8t^2}\right) |\delta _3(0,t)|+\frac{52t+9}{1024t^2}\\&+\,t^2 e^{-2t}\left\{ 1+|\gamma (1,t)|+\left( 1-\frac{1}{2t}-\frac{1}{8t^2}\right) (1+|\gamma (0,t)|)\right\} \\< & {} 0.2558 \quad \mathrm {for} \,\,t>4.3. \end{aligned}$$

So we obtain that when \(t>4.3\),

$$\begin{aligned} h(t)= & {} 2t^{\frac{3}{2}}\left\{ 1-\frac{I_1(t)}{I_0(t)}\left[ \frac{1}{t}+\frac{I_1(t)}{I_0(t)}\right] \right\} \\= & {} t^{-\frac{1}{2}}\left( 1-4R-\frac{1-16R+64R^2}{32t^2}\right) ,\\< & {} t^{-\frac{1}{2}}\left( 1+4|R|+\frac{1+16|R|+64R^2}{32t^2}<2.0389t^{-\frac{1}{2}}<0.9832\right) . \end{aligned}$$

In addition, according to Lemma 3 in [12], we know

$$\begin{aligned} (I_0(t)+I_2(t))I_0(t)-2I_1^2(t)\ge 0, \end{aligned}$$

for any \(t\ge 0\), i.e, \(h(t)\ge 0\).

So when \(t>4.3\), \(0\le h(t)<1\).

Based on Lemma 2 in our previous work [12] indicating \(0 \le h(t)<1\) on [0, 3902], we conclude that \(0 \le h(t)<1\) on \([0, +\infty )\).\(\square \)

1.2 Appendix 2: Proof of Lemma 2

Proof

As \(g(t)= -\log I_0(t)-2\sqrt{t}\), the gradient of g(t) is given by

$$\begin{aligned} \nabla g(t) = -\frac{I_1(t)}{I_0(t)}-\frac{1}{\sqrt{t}}. \end{aligned}$$

Then

$$\begin{aligned} |\nabla g(t)-\nabla g(t')| = \Bigg |\frac{I_1(t')}{I_0(t')}+\frac{1}{\sqrt{t'}}-\frac{I_1(t)}{I_0(t)}-\frac{1}{\sqrt{t}}\Bigg |. \end{aligned}$$

We have proved that g(t) is strictly convex on \([0,+\infty )\). That is, \(\nabla g(t)\) is strictly increasing on \([0,+\infty )\). Then it’s sufficient to prove the following inequality

$$\begin{aligned} \frac{I_1(t')}{I_0(t')}+\frac{1}{\sqrt{t'}}-\frac{I_1(t)}{I_0(t)}-\frac{1}{\sqrt{t}}\le \frac{1}{2}(t-t') \quad \text {if} \quad t>t', t,t' \in [1,+\infty ). \end{aligned}$$

Denote \(J(t): = \frac{I_1(t)}{I_0(t)}+\frac{1}{\sqrt{t}}+\frac{1}{2}t\). It is sufficient to prove J(t) is increasing on \([1,+\infty )\). Since

$$\begin{aligned} J'(t)= & {} \frac{1}{2}-\frac{1}{2}t^{-\frac{3}{2}}+\frac{(I_0(t)+I_2(t))I_0(t)-2I_1(t)^2}{2I_0(t)^2} \\= & {} \frac{1}{2}t^{-\frac{3}{2}}\left[ t^{\frac{3}{2}}-1+t^{\frac{3}{2}}\frac{(I_0(t)+I_2(t))I_0(t)-2I_1(t)^2}{I_0(t)^2}\right] \\\ge & {} \frac{1}{2}t^{-\frac{3}{2}}\left( t^{\frac{3}{2}}-1\right) \\\ge & {} 0, \end{aligned}$$

where the last second \(\ge \) is based on Lemma 1 in which \(t^{\frac{3}{2}}\frac{(I_0(t)+I_2(t))I_0(t)-2I_1(t)^2}{I_0(t)^2}\ge 0\), J(t) is increasing and we finish the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, Y. & Zeng, T. Variational Image Restoration and Segmentation with Rician Noise. J Sci Comput 78, 1329–1352 (2019). https://doi.org/10.1007/s10915-018-0826-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0826-3

Keywords

Navigation