Skip to main content
Log in

A Fast Algorithm for Solving Linear Inverse Problems with Uniform Noise Removal

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a fast algorithm for solving an unconstrained optimization model for uniform noise removal which is an important task in inverse problems. The optimization model consists of an \(\ell _\infty \) data fitting term and a total variation regularization term. By utilizing the alternating direction method of multipliers (ADMM) for such optimization model, we demonstrate that one of the ADMM subproblems can be formulated by involving a projection onto \(\ell _1\) ball which can be solved efficiently by iterations. The convergence of the ADMM method can be established under some mild conditions. In practice, the balance between the \(\ell _\infty \) data fitting term and the total variation regularization term is controlled by a regularization parameter. We present numerical experiments by using the L-curve method of the logarithms of data fitting term and total variation regularization term to select regularization parameters for uniform noise removal. Numerical results for image denoising and deblurring, inverse source, inverse heat conduction problems and second derivative problems have shown the effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www2.compute.dtu.dk/~pcha/Regutools/.

References

  1. Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Process. 45(4), 913–917 (1997)

    Article  Google Scholar 

  2. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, M., Zhang, X., Shao, Q.: Adaptive correction procedure for TVL1 image deblurring under impulse noise. Inverse Probl. 32(8), 085004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. CRC Press, Boca Raton (1998)

    Book  MATH  Google Scholar 

  5. Bovik, A.: Handbook of Image and Video Processing. Academic Press, New York (2000)

    MATH  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  7. Castellanos, J.L., Gómez, S., Guerra, V.: The triangle method for finding the corner of the L-curve. Appl. Numer. Math. 43(4), 359–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \({L}^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clason, C.: \({L}^{\infty }\) fitting for inverse problems with uniform noise. Inverse Probl. 28(10), 104007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clason, C., Jin, B., Kunisch, K.: A semismooth Newton method for \(\text{ L }^1\) data fitting with automatic choice of regularization parameters and noise calibration. SIAM J. Imaging Sci. 3(2), 199–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colton, D., Coyle, J., Monk, P.: Recent developments in inverse acoustic scattering theory. SIAM Rev. 42(3), 369–414 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Condat, L.: Fast projection onto the simplex and the \(l_1\) ball. Math. Program. 158(1–2), 575–585 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, Y., Zeng, T.: A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imaging Sci. 6(3), 1598–1625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the \(\ell _1\)-ball for learning in high dimensions. In: Proceedings of the International Conference on Machine Learning, pp. 272–279. ACM (2008)

  15. Durand, S., Nikolova, M.: Denoising of frame coefficients using \(\ell ^1\) data-fidelity term and edge-preserving regularization. Multiscale Model. Simul. 6(2), 547–576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  18. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Revue Française d’Autom. Informat. Rech. Opér. Anal. Numér 9(R2), 41–76 (1975)

  19. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2008)

    Google Scholar 

  20. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadephia (1998)

    Book  Google Scholar 

  22. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46(2), 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hansen, P.C., O’Leary, D.P.: The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput. 14(6), 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6(1), 62–88 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, Y.-M., Lu, D.-Y., Zeng, T.: Two-step approach for the restoration of images corrupted by multiplicative noise. SIAM J. Sci. Comput. 35(6), A2856–A2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, Y.-M., Moisan, L., Ng, M.K., Zeng, T.: Multiplicative noise removal via a learned dictionary. IEEE Trans. Image Process. 21(11), 4534–4543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, Y.-M., Ng, M.K., Wen, Y.-W.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7(2), 774–795 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall PTR, Englewood Cliffs (1993)

    MATH  Google Scholar 

  29. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  30. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, London (2004)

    MATH  Google Scholar 

  31. Ng, M.K., Chan, R.H., Tang, W.-C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21(3), 851–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nikolova, M.: Minimizers of cost-functions involving non-smooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nikolova, M.: Weakly constrained minimization: application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  35. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  36. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  37. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  38. Rudin, L.I., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of the IEEE International Conference on Image Processing, volume 1, pp. 31–35. Austin, TX (1994)

  39. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with Cauchy noise. SIAM J. Imaging Sci. 8(3), 1894–1922 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Setzer, S., Steild, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Rep. 21(3), 193–199 (2010)

    Article  Google Scholar 

  42. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, Washington, DC (1977)

    MATH  Google Scholar 

  44. van den Berg, E., Friedlander, M.P.: Probing the pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wan, T., Canagarajah, N., Achim, A.: Segmentation of noisy colour images using Cauchy distribution in the complex wavelet domain. IET Image Process. 5(2), 159–170 (2011)

    Article  Google Scholar 

  46. Wang, F., Zhao, X.-L., Ng, M.K.: Multiplicative noise and blur removal by framelet decomposition and \(\ell _1\)-based L-curve method. IEEE Trans. Image Process. 25(9), 4222–4232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Weiss, P., Aubert, G., Blanc-Féraud, L.: Some Applications of \(\ell ^{\infty }\)-Constraints in Image Processing. INRIA Resarch Report 6115 (2006)

  48. Wen, Y.-W., Chan, R.H., Zeng, T.: Primal-dual algorithms for total variation based image restoration under Poisson noise. Sci. China Math. 59(1), 141–160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wen, Y.-W., Ching, W.-K., Ng, M.K.: A semi-smooth Newton method for inverse problem with uniform noise. J. Sci. Comput. 75(2), 713–732 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X., Bai, M., Ng, M.K.: Nonconvex-TV based image restoration with impulse noise removal. SIAM J. Imaging Sci. 10(3), 1627–1667 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, X., Ng, M.K., Bai, M.: A fast algorithm for deconvolution and Poisson noise removal. J. Sci. Comput. 75(3), 1535–1554 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments and suggestions that have helped improve the presentation of the paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongjun Zhang.

Additional information

Xiongjun Zhang: Research supported in part by the National Natural Science Foundation of China under Grants 11801206, 11571098, 11871026, Hubei Provincial Natural Science Foundation of China under Grant 2018CFB105, and Self-Determined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE under Grant CCNU17XJ031. Michael K. Ng: Research supported in part by the HKRGC GRF 1202715, 12306616, 12200317 and HKBU RC-ICRS/16-17/03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ng, M.K. A Fast Algorithm for Solving Linear Inverse Problems with Uniform Noise Removal. J Sci Comput 79, 1214–1240 (2019). https://doi.org/10.1007/s10915-018-0888-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0888-2

Keywords

Mathematics Subject Classification

Navigation