Skip to main content
Log in

An Effective Dissipation-Preserving Fourth-Order Difference Solver for Fractional-in-Space Nonlinear Wave Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we devise an efficient dissipation-preserving fourth-order difference solver for the fractional-in-space nonlinear wave equations. First of all, we present a detailed derivation of the discrete energy dissipation property of the system. Then, with the help of the mathematical induction and Brouwer fixed point theorem, it is shown that the proposed scheme is uniquely solvable. Subsequently, by virtue of utilizing the discrete energy method, it is proven that the proposed solver achieves the convergence rates of \({\mathcal {O}}(\Delta t^2+h^{4})\) in the discrete \(L^{\infty }\)- norm, and is unconditionally stable. And moreover, the exhibited convergence analysis is unconditional for the time step and space size, in comparison with the restrictive conditions required in the existing works. Finally, numerical results confirm the efficiency of the proposed scheme and exhibit the correctness of theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drazin, P.J., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  2. Deng, D., Zhang, C.: Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations. Appl. Math. Model. 39, 1033–1049 (2015)

    Article  MathSciNet  Google Scholar 

  3. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  4. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  Google Scholar 

  5. Deng, W., Li, B., Tian, W., Zhang, P.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16, 125–149 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, Z., Gao, G.: Finite Difference Methods for Fractional Differential Equations. Science Press, Beijing (2015)

    Google Scholar 

  8. Alfimov, G., Pierantozzi, T., Vázquez, L.: Numerical study of a fractional sine-Gordon equation. Prog. Fract. Differ. Appl. 4, 153–162 (2004)

    MATH  Google Scholar 

  9. Macías-Díaz, J.E.: A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. J. Comput. Phys. 315, 40–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ran, M., Zhang, C.: A linearly implicit conservative scheme for the fractional nonlinear Schrödinger equation with wave operator. Int. J. Comput. Math. 93, 1103–1118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, C., Chen, A.: Numerical methods for fractional partial differential equations. Int. J. Comput. Math. 95, 1048–1099 (2018)

    Article  MathSciNet  Google Scholar 

  12. Wang, H., Cheng, A., Wang, K.: Fast finite volume methods for space-fractional diffusion equations. Discrete Contin. Dyn. Syst. Ser. B 20, 1427–1441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, N., Wang, H.: A fast finite element method for space-fractional dispersion equations on bounded domains in R\(^{2}\). SIAM J. Sci. Comput. 37, 1614–1635 (2015)

    Article  MathSciNet  Google Scholar 

  14. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52, 2272–2294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, W., Li, X., Liang, D.: Energy-conserved splitting finite difference time domain methods for Maxwell’s equations in three dimensions. SIAM J. Numer. Anal. 48, 1530–1554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Q., Zhang, Z., Zhang, X., Zhu, Q.: Energy-preserving finite volume element method for the improved Boussinesq equation. J. Comput. Phys. 270, 58–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yan, J., Zhang, Z.: New energy-preserving schemes using Hamiltonian Boundary Value and Fourier pseudospectral methods for the numerical solution of the “good” Boussinesq equation. Comput. Phys. Commun. 201, 33–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brugnano, L., Zhang, C., Li, D.: A class of energy-conserving Hamiltonian boundary value methods for nonlinear Schrödinger equation with wave operator. Commun. Nonlinear Sci. Numer. Simul. 60, 33–49 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cai, Y., Yuan, Y.: Uniform error estimates of the finite difference method for the Zakharov equations in the subsonic limit regime. Math. Comput. 87, 1191–1225 (2018)

    Article  MATH  Google Scholar 

  24. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38, 3264–3290 (2016)

    Article  MathSciNet  Google Scholar 

  25. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strauss, W., Vázquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Deng, D., Zhang, C.: A family of new fourth-order solvers for a nonlinear damped wave equation. Comput. Phys. Commun. 184, 86–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Deng, D., Liang, D.: The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations. Appl. Math. Comput. 329, 188–209 (2018)

    Article  MathSciNet  Google Scholar 

  29. Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein–Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. CRC Press, New York (2010)

    Book  MATH  Google Scholar 

  32. Liu, H., Xing, Y.: An invariant preserving discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Sci. Comput. 38, 1919–1934 (2016)

    Article  MathSciNet  Google Scholar 

  33. Macías-Díaz, J.E.: A numerically efficient dissipation-preserving implicit method for a nonlinear multidimensional fractional wave equation. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0692-z

    MathSciNet  MATH  Google Scholar 

  34. Celik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Macías-Díaz, J.E., Hendy, A.S., De Staelen, R.H.: A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Appl. Math. Comput. 325, 1–14 (2018)

    MathSciNet  Google Scholar 

  36. Zhao, X., Sun, Z., Hao, Z.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation. SIAM J. Sci. Comput. 36, 2865–2886 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun, Z.: A note on finite difference method for generalized Zakharov equations. J. Southeast. Univ. 16, 84–86 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Wang, P., Huang, C.: An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation. J. Comput. Phys. 312, 31–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, P., Huang, C., Zhao, L.: Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation. J. Comput. Appl. Math. 306, 231–247 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11471166, 11401294), Natural Science Foundation of Jiangxi Provincial Education Department (Grant No. GJJ160706), State Scholarship Fund of CSC for Overseas Studies (Grant No. 201806860014). The authors greatly appreciate the anonymous referees for their valuable comments and suggestions, which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhang, Z. An Effective Dissipation-Preserving Fourth-Order Difference Solver for Fractional-in-Space Nonlinear Wave Equations. J Sci Comput 79, 1753–1776 (2019). https://doi.org/10.1007/s10915-019-00921-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00921-6

Keywords

Mathematics Subject Classification

Navigation