Skip to main content
Log in

Virtual Element Methods for Elliptic Variational Inequalities of the Second Kind

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to virtual element methods for solving elliptic variational inequalities (EVIs) of the second kind. First, a general framework is provided for the numerical solution of the EVIs and for its error analysis. Then virtual element methods are applied to solve two representative EVIs: a simplified friction problem and a frictional contact problem. Optimal order error estimates are derived for the virtual element solutions of the two representative EVIs, including the effects of numerical integration for the non-smooth term in the EVIs. A fast solver is introduced to solve the discrete problems. Several numerical examples are included to show the numerical performance of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Alsaedi, A., Brezzi, F., Marini, L., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Beirão Da Veiga, L., Mora, D., Verani, M.: A stream function formulation of the Stokes problem for the virtual element method. SIAM J. Numer. Anal. 52, 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Artioli, E., Beirão Da Veiga, L., Lovadina, C., et al.: Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput. Mech. 60(3), 355–377 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Artioli, E., Beirão Da Veiga, L., Lovadina, C., Sacco, E.: Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem. Comput. Mech. 60, 643–657 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Badea, L., Krause, R.: One- and two-level Schwarz methods for variational inequalities of the second kind and their application to frictional contact. Numer. Math. 120(4), 573–599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems. Wiley, Chichester (1984)

    MATH  Google Scholar 

  8. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., et al.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão Da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão Da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beirão Da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bostan, V., Han, W.: A posteriori error analysis for finite element solutions of a frictional contact problem. Comput. Methods Appl. Mech. Eng. 195(9–12), 1252–1274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C., Guan, Q., Sung, L.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017)

    Article  MathSciNet  Google Scholar 

  15. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  16. Brezzi, F., Hager, W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities I. Primal Theory. Numer. Math. 28, 431–443 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brezzi, F., Hager, W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities II. Mixed methods. Numer. Math. 31, 1–16 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bürg, M., Schröder, A.: A posteriori error control of hp-finite elements for variational inequalities of the first and second kind. Comput. Math. Appl. 70, 2783–2802 (2015)

    Article  MathSciNet  Google Scholar 

  19. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 5 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29(2), 025011 (33 pp) (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, X., Han, W.: Inexact Uzawa algorithms for variational inequalities of the second kind. Comput. Methods Appl. Mech. Eng. 192(11–12), 1451–1462 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  23. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  24. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  26. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28(128), 963–971 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Friedman, A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  28. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  29. Glowinski, R., Lions, J.L., Tremolieres, I.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  30. Han, W., Jensen, S., Reddy, B.D.: Numerical approximations of internal variable problems in plasticity: error analysis and solution algorithm. Numer. Linear Algebra Appl. 4(3), 191–204 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Han, W., Reddy, B.D.: On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal. 32(6), 1778–1807 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society and International Press, London (2002)

    Book  MATH  Google Scholar 

  33. Han, W., Wang, L.: Nonconforming finite element analysis for a plate contact problem. SIAM J. Numer. Anal. 40(5), 1683–1697 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  35. Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction. Elsevier, Amsterdam (1981)

    MATH  Google Scholar 

  36. Sutton, O.J.: The virtual element method in 50 lines of MATLAB. Numer. Algorithms. 75, 1–19 (2016)

    MathSciNet  Google Scholar 

  37. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J. Numer. Anal. 48(2), 708–733 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, F., Wei, H.: Virtual element methods for the obstacle problem. IMA J. Numer. Anal. (2018). https://doi.org/10.1093/imanum/dry055

  40. Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85, 125–131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. J. Sci. Comput. 76, 364–389 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, T., Tang, L.: Finite volume method for the variational inequalities of first and second kinds. Math. Methods Appl. Sci. 38(17), 3980–3989 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their valuable suggestions and comments which improved an early version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of W. Han was partially supported by NSF under the Grant DMS-1521684.

The work of J. Huang was partially supported by NSFC (Grant No. 11571237).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Han, W. & Huang, J. Virtual Element Methods for Elliptic Variational Inequalities of the Second Kind. J Sci Comput 80, 60–80 (2019). https://doi.org/10.1007/s10915-019-00929-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00929-y

Keywords

Navigation