Skip to main content
Log in

A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Preconditioners are popularly used for speeding up Krylov subspace iterative method for solving linear systems from discretization of fractional differential equations (FDEs) on rectangular domains. Though some recent works have been developed for FDEs in general convex domains, it still has room for improvement in the design of preconditioner. For this sake, in this paper, we theoretically study the preconditioner problem for two-dimensional conservative space-fractional diffusion equations with variable coefficients and propose a robust preconditioner with penalty term which can deal with any convex domains significantly. We further prove that the proposed preconditioner equals to the coefficient matrix plus a low rank matrix and a matrix with small norm under certain conditions. It implies that the new preconditioner can effectively accelerate the convergence rate of Krylov subspace method. Experimental results show the good performance of the robust preconditioner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bai, J., Feng, X.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16, 2492–2502 (2007)

    Article  MathSciNet  Google Scholar 

  2. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1413 (2000)

    Article  Google Scholar 

  3. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy Motion. Water Resour. Res. 36(6), 1413–1423 (2000)

    Article  Google Scholar 

  4. Chan, R.H., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Stat. Comput. 10(1), 104–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S., Liu, F., Turner, I., Anh, V.: A fast numerical method for two-dimensional Riesz space fractional diffusion equations on a convex bounded region. Appl. Numer. Math. 134, 66–80 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45(2), 572–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, W., Jiang, X., Liu, F., Anh, V.: The unstructured mesh finite element method for the two-dimensional multi-term time-space fractional diffusion-wave equation on an irregular convex domain. J. Sci. Comput. 77, 27–52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, W., Liu, F.: A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 77, 114–121 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, Q., Huang, G., Zhan, H.: A finite element solution for the fractional advection-dispersion equation. Adv. Water Resour. 31, 1578–1589 (2008)

    Article  Google Scholar 

  10. Jia, J., Wang, H.: A fast finite volume method for conservative space-fractional diffusion equations in convex domains. J. Comput. Phys. 310, 63–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jia, J., Wang, H.: A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput. Math. Appl. 75, 2013–2043 (2018)

    Article  MathSciNet  Google Scholar 

  12. Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  13. Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18(2), 469–488 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lei, S., Chen, X., Zhang, X.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. East Asian J. Appl. Math 6, 109–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242(5), 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time-dependent tow-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, F., Zhuang, P., Turner, I., Anh, V., Burrage, K.: A semi-alternating direction method for a 2-D fractional FitzHugh?Nagumo monodomain model on an approximate irregular domain. J. Comput. Phys. 293, 252–263 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyu, P., Vong, S.: A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equations. Numer. Algorithms (2017)

  22. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers Inc., Chicago (2006)

    Google Scholar 

  23. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moroney, T., Yang, Q.: Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast Poisson preconditioners. J. Comput. Phys. 246, 304–317 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan, J., Ke, R., Ng, M.K., Sun, H.: Preconditioning techniques for digonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–A2719 (2014)

    Article  MATH  Google Scholar 

  26. Pan, J., Ng, M., Wang, H.: Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numer. Algor. 74, 153–173 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  28. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A. 314, 749–755 (2002)

    Article  MATH  Google Scholar 

  29. Ritchie, K., Shan, X., Kondo, J., Iwasawa, K., Fujiwara, T., Kusumi, A.: Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88, 2266–2277 (2005)

    Article  Google Scholar 

  30. Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(R^2\). J. Comput. Appl. Math. 193, 243–268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sabzikar, F., Meerschaert, M.M., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Philadelphia (1993)

    MATH  Google Scholar 

  33. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B. 12, 2455–2477 (1975)

    Article  Google Scholar 

  34. Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55(11), 48–53 (2002)

    Article  Google Scholar 

  35. Song, F., Xu, C.: Spectral direction splitting methods for two-dimensional space fractional diffusion equations. J. Comput. Phys. 299, 196–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vong, S., Wang, Z.: A high order compact finite difference scheme for time fractional Fokker-Planck equations. Appl. Math. Lett. 43, 38–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Zhang, X.: A high-accuracy preserving spectral Galerkin method for the dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281, 67–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, Z., Yuan, Z., Nie, Y., Wang, J., Liu, F.: Finite element method for nonlinear Riesz space fractional diffusion equation on irregular domains. J. Comput. Phys. 330, 863–883 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, X., Crawford, J.W., Deeks, L.K., Shutler, M.I., Bengough, A.G., Young, I.M.: A mass balance based numerical method for the fractional advection-dispersion equation: Theory and application. Water Resour. Res. 41, 1–10 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Yun-Chi Huang from University of Macau for his helpful discussion, and also the referees for their valuable comments and suggestions that improved the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Long Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the University of Macau [MYRG2016-00202-FST, MYRG2018-00025-FST] and the Science and Technology Development Fund, Macao S.A.R. (FDCT) [048/2017/A].

Appendix

Appendix

1.1 A. Proof of Lemma 1

Proof

Define \(f_a(x)=-\frac{1}{2}(x+\frac{1}{2})^\alpha +\frac{1}{\alpha +1}[(x+1)^{\alpha +1}-(x+\frac{1}{2})^{\alpha +1}]\), then we have \(a_m^{(\alpha )}=f_a(m)-f_a(m-1)\). Observed that

$$\begin{aligned} f'_a(x)= & {} -\frac{\alpha }{2}(x+1)^{\alpha -1}+(x+1)^{\alpha }-\left( x+\frac{1}{2}\right) ^{\alpha }\\= & {} \frac{(2-2t)^{-\alpha }}{t^{1-\alpha }}[t^{1-\alpha }-(1-\alpha )t-\alpha ], \end{aligned}$$

with \(t=\frac{x+\frac{1}{2}}{x+1}\), which satisfies \(0<t<1\) provided \(x\ge 1\).

Denote \(q_{a}(t)=t^{1-\alpha }-[(1-\alpha )t+\alpha ]\), then \(q'_{a}(t)=(1-\alpha )(t^{-\alpha }-1)>0,\) so that \(q_{a}(t)\) is a monotonic increasing function and the root locates at \(t=1\), which implies that \(q_a(t)<0\) when \(0<t<1\). It is clear that \(\frac{(2-2t)^{-\alpha }}{t^{1-\alpha }}>0\), hence \(f'_a(x)<0\), \(t\in (0,1)\), which yields \(\{a^{(\alpha )}_m\}\) is negative for \(m\ge 1\). Similarly,

$$\begin{aligned} f''_a(x)= & {} -\frac{\alpha (\alpha -1)}{2}(x+1)^{\alpha -2}+\alpha (x+1)^{\alpha -1}-\alpha \left( x+\frac{1}{2}\right) ^{\alpha -1}\\= & {} \frac{\alpha (2-2t)^{1-\alpha }}{t^{2-\alpha }}[t^{2-\alpha }-(2-\alpha )t-(\alpha -1)]. \end{aligned}$$

Let \(p_a(t)=t^{2-\alpha }-[(2-\alpha )t+(\alpha -1)]\). Due to \(p'_{a}(t)=(2-\alpha )(t^{1-\alpha }-1)<0\) and \(p_{a}(1)=0\), we obtain \(p_a(t)>0\) when \(0<t<1\). Hence \(f''_a(x)>0\) for \(t\in (0,1)\), which implies \(\{a^{(\alpha )}_m\}\) is an increasing sequence for \(m\ge 1\).

In the same way, \(\{b_m^{(\alpha )}\}\) can be written as \(b_m^{(\alpha )} = f_b(m)-f_b(m-1)\), where

$$\begin{aligned} f_b(x)=-\frac{1}{2}\left( x+\frac{1}{2}\right) ^\alpha +\frac{1}{\alpha +1}\left[ \left( x+\frac{1}{2}\right) ^{\alpha +1}-x^{\alpha +1}\right] . \end{aligned}$$

Let \(t=\frac{x}{x+\frac{1}{2}}\), then

$$\begin{aligned} f'_b(x)= & {} -(2-2t)^{-\alpha }(t^\alpha -\alpha t-1+\alpha ), \\ f''_b(x)= & {} -\alpha (2-2t)^{1-\alpha }[t^{\alpha -1}-(\alpha -1)t-2+\alpha ]. \end{aligned}$$

Note that \(t^\alpha -\alpha t-1+\alpha < 0\) and \(t^{\alpha -1}-(\alpha -1)t-2+\alpha >0\) when \(0<t<1\). One can similarly prove that \(f'_b(x)>0\) and \(f''_b(x)<0\). Therefore, \(\{b_m^{(\alpha )}\}\) is a positive and decreasing sequence.

As for the sequence \(\{c_m^{(\alpha )}\}\), we firstly define \(f_c(x)=\frac{1}{2}[(x+\frac{3}{2})^\alpha -(x+\frac{1}{2})^\alpha ]\) and \(g_c(x)=\frac{1}{1+\alpha }[(x+\frac{3}{2})^{\alpha +1}+(x+\frac{1}{2})^{\alpha +1}-2(x+1)^{\alpha +1}],\) then

$$\begin{aligned} c_m^{(\alpha )}= & {} f_c(m)-f_c(m-1)+g_c(m)-g_c(m-1). \end{aligned}$$

Define \(k_c(x)=x^{\alpha }\), then we know that \(k''_c(x)=\alpha (\alpha -1)x^{\alpha -2}<0\) and \(k_c(x)\) is concave. Hence, \(g_c'(m)=k_c(m+\frac{3}{2})+k_c(m+\frac{1}{2})-2k_c(m+1)<0\). Besides, it is clear that \(f'_c(m)<0\), thus \(c^{(\alpha )}_{m} < 0\). Let \(q_c(x)=x^{\alpha -1}\), then

$$\begin{aligned} q''_c(x)=(\alpha -1)(\alpha -2)x^{\alpha -3}>0, \end{aligned}$$

which implies that \(q_c(x)\) is a convex function, i.e.,

$$\begin{aligned}&q_c\left( m+\frac{3}{2}\right) +q_c\left( m-\frac{1}{2}\right) \ge 2q_c\left( m+\frac{1}{2}\right) \quad \mathrm{and}\quad q_c\left( m+\frac{3}{2}\right) \\&\quad +q_c\left( m+\frac{1}{2}\right) \ge 2q_c(m+1). \end{aligned}$$

Therefore,

$$\begin{aligned} f'_c(m)-f'_c(m-1)= & {} \frac{\alpha }{2} \left[ q_c\left( m+\frac{3}{2}\right) -2q_c\left( m+\frac{1}{2}\right) +q_c\left( m-\frac{1}{2}\right) \right] \ge 0, \end{aligned}$$

and

$$\begin{aligned} g''_c(m)= & {} \alpha \left[ q_c\left( m+\frac{3}{2}\right) +q_c\left( m+\frac{1}{2}\right) -2q_c (m+1)\right] \ge 0, \end{aligned}$$

which yields that

$$\begin{aligned} g'_c(m)-g'_c(m-1)\ge 0. \end{aligned}$$

Consequently \(\{c_m^{(\alpha )}\}\) is an increasing sequence for \(m\ge 1\).

1.2 B. Proof of Lemma 3

Proof

In accordance with the proof of the Lemma 1,

$$\begin{aligned} c_m^{(\alpha )}= & {} f_c(m)-f_c(m-1)+g_c(m)-g_c(m-1)\\= & {} \int ^{m}_{m-1}f'_c(s)ds+\int ^{m}_{m-1}g'_c(s)ds. \end{aligned}$$

Then

$$\begin{aligned} \left| \int ^{m}_{m-1}f'_c(s)ds\right|= & {} \left| \int ^{m}_{m-1}\frac{\alpha }{2}\left[ \left( s+\frac{3}{2}\right) ^{\alpha -1}-\left( s+\frac{1}{2}\right) ^{\alpha -1}\right] ds\right| \\= & {} \frac{|\alpha (\alpha -1)|}{2}\int ^{m}_{m-1}ds \int _{s-1}^{s}\left( k+\frac{3}{2}\right) ^{\alpha -2}dk\\\le & {} \frac{|\alpha (\alpha -1)|}{2}\int ^{m}_{m-1}ds \int _{s-1}^{s}\left( s+\frac{1}{2}\right) ^{\alpha -2}dk\\= & {} \frac{\alpha (1-\alpha )}{2}\int ^{m}_{m-1} \left( s+\frac{1}{2}\right) ^{\alpha -2} ds\\\le & {} \frac{\alpha (1-\alpha )}{2}\int ^{m}_{m-1} \left( m-\frac{1}{2}\right) ^{\alpha -2} ds\\= & {} \frac{\alpha (1-\alpha )}{2}\left( m-\frac{1}{2}\right) ^{\alpha -2} \end{aligned}$$

and

$$\begin{aligned} \left| \int ^{m}_{m-1}g'_c(s)ds\right|= & {} \left| \int ^{m}_{m-1}\left[ \left( s+\frac{3}{2}\right) ^\alpha +\left( s+\frac{1}{2}\right) ^\alpha -2(s+1)^\alpha \right] ds\right| \\= & {} \left| \alpha (\alpha -1)\right| \int ^{m}_{m-1}ds\int _{s-\frac{1}{2}}^{s}dk\int ^{k}_{k-\frac{1}{2}}\left( \eta +\frac{3}{2}\right) ^{\alpha -2}d\eta \\\le & {} \frac{\alpha (1-\alpha )}{4}\left( m-\frac{1}{2}\right) ^{\alpha -2}. \end{aligned}$$

As \(m\ge 1\) and \(0<\alpha <1\), it holds that

$$\begin{aligned} |c_m^{(\alpha )}|\le & {} \left| \int ^{m}_{m-1}f'(s)ds\right| +\left| \int ^{m}_{m-1}g'(s)ds\right| \\\le & {} \frac{\alpha (1-\alpha )}{2}\left( m-\frac{1}{2}\right) ^{\alpha -2}+\frac{\alpha (1-\alpha )}{4}\left( m-\frac{1}{2}\right) ^{\alpha -2}\\\le & {} \frac{3\alpha (1-\alpha )2^{2-\alpha }}{4}\frac{1}{m^{2-\alpha }}. \end{aligned}$$

With the similar proof, when \(m>1\), it is satisfied that

$$\begin{aligned} |b_{m}^{(\alpha )}|\le & {} \left| \frac{\alpha }{2}\int ^{m}_{m-1}{\left( s+\frac{1}{2}\right) ^{\alpha -1}}ds\right| + \left| \int ^{m}_{m-1}{\left( s+\frac{1}{2}\right) ^{\alpha }-s^\alpha }ds\right| \\\le & {} \frac{\alpha }{2}\int ^{m}_{m-1}{\left( m-\frac{1}{2}\right) ^{\alpha -1}}ds + \alpha \int ^{m}_{m-1}ds \int ^{s+\frac{1}{2}}_{s}{s^{\alpha -1}}dk\\\le & {} \frac{\alpha }{2}\left( m-\frac{1}{2}\right) ^{\alpha -1}+ \frac{\alpha }{2}(m-1)^{\alpha -1}\\\le & {} 2^{1-\alpha }\alpha \frac{1}{m^{1-\alpha }}. \end{aligned}$$

It is easy to know that \(b_1^{(\alpha )}\le 2^{1-\alpha }\alpha \). In sum, we have

$$\begin{aligned} |b_{m}^{(\alpha )}|\le \frac{2^{1-\alpha }\alpha }{m^{1-\alpha }}, \end{aligned}$$

for all \(m\ge 1\) and \(0<\alpha <1\).

The proof for sequence \(\{a_m^{(\alpha )}\}\) is similar to the one of \(\{b_m^{(\alpha )}\}\).

1.3 C. Proof of Lemma 6

Proof

First of all, we consider the matrix \(A^{x}_{0}\). For any given \(\epsilon >0\), take

$$\begin{aligned} N_{0}=\Bigg \lceil \left( \frac{3\alpha (1-\alpha )2^{2-\alpha }}{4{\epsilon }}\right) ^{\frac{1}{2-\alpha }} \max \{\gamma _x^{\frac{1}{2-\alpha }},(1-\gamma _x)^{\frac{1}{2-\alpha }}\}\Bigg \rceil >0, \end{aligned}$$

from Lemma 1 and Lemma 3, for all \(n>N_0\), we have

$$\begin{aligned} \sum ^{\infty }_{m=n+1}|w^{(\alpha )}_{0,m}|= & {} \sum ^{\infty }_{m=n+1}\Big |\gamma _{x}(c_{m-1}^{(\alpha )} - c_{m}^{(\alpha )})\Big | \le \gamma _{x}\sum ^{\infty }_{m=N_0+1}\left( c_{m}^{(\alpha )}-c_{m-1}^{(\alpha )}\right) \\\le & {} -\gamma _{x}c_{N_0}^{(\alpha )} \le \frac{3\gamma _x\alpha (1-\alpha )2^{2-\alpha }}{4 N_{0}^{2-\alpha }}\le \frac{\gamma _x\epsilon }{\max \{\gamma _x,1-\gamma _x\}} \le \epsilon , \end{aligned}$$

and

$$\begin{aligned} \sum ^{\infty }_{m=n+1}|w^{(\alpha )}_{0,-m}|=\sum ^{\infty }_{m=n+1}\Big |(1-\gamma _{x})(c_{m-1}^{(\alpha )} - c_{m}^{(\alpha )})\Big |\le \frac{3(1-\gamma _x)\alpha (1-\alpha )2^{2-\alpha }}{4 N_{0}^{2-\alpha }}\le \epsilon . \end{aligned}$$

For the matrix \(A^x_1\), take

$$\begin{aligned} N_1=\Bigg \lceil \left( \frac{2^{1-\alpha }\alpha }{\epsilon }\right) ^{\frac{1}{1-\alpha }} \max \{\gamma _x^{\frac{1}{1-\alpha }},(1-\gamma _x)^{\frac{1}{1-\alpha }}\}\Bigg \rceil >0. \end{aligned}$$

For all \(n>N_1\), we get

$$\begin{aligned} \sum ^{\infty }_{m=n+1}|w^{(\alpha )}_{1,m}|= & {} \sum ^{\infty }_{m=n+1}\Big |\gamma _{x}(a_{m-1}^{(\alpha )} - a_{m}^{(\alpha )})\Big | \le \gamma _{x}\sum ^{\infty }_{m=N_1+1}\left( a_{m}^{(\alpha )}-a_{m-1}^{(\alpha )}\right) \\\le & {} -\gamma _{x}a_{N_1}^{(\alpha )} \le \frac{2^{1-\alpha }\gamma _x \alpha }{N_1^{1-\alpha }}\le \frac{\gamma _x\epsilon }{\max \big \{\gamma _x, 1-\gamma _x\}}\le \epsilon , \end{aligned}$$

and

$$\begin{aligned} \sum ^{\infty }_{m=n+1}|w^{(\alpha )}_{1,-m}|= & {} \sum ^{\infty }_{m=n+1}\Big |(1-\gamma _{x})(b_{m+1}^{(\alpha )} - b_{m}^{(\alpha )})\Big | \le (1-\gamma _{x})\sum ^{\infty }_{m=N_1+1}\left( b_{m}^{(\alpha )}-b_{m+1}^{(\alpha )}\right) \\\le & {} (1-\gamma _{x})b_{N_1+1}^{(\alpha )}<(1-\gamma _{x})b_{N_1}^{(\alpha )} \le \frac{2^{1-\alpha }(1-\gamma _x)\alpha }{N_1^{1-\alpha }}\le \epsilon . \end{aligned}$$

For the matrix \(A^x_{-1}\), with similar way, take

$$\begin{aligned} N_{-1}=\Bigg \lceil \left( \frac{2^{1-\alpha }(1-\gamma _x)\alpha }{\epsilon }\right) ^{\frac{1}{1-\alpha }} \max \{\gamma _x^{\frac{1}{1-\alpha }},(1-\gamma _x)^{\frac{1}{1-\alpha }}\}\Bigg \rceil >0, \end{aligned}$$

for all \(n>N_{-1}\), we obtain \(\sum ^{\infty }_{m=n+1}|w^{(\alpha )}_{-1,m}|<\epsilon \) and \(\sum ^{\infty }_{m=n+1}|w^{(\alpha )}_{-1,-m}|\le \epsilon \).

In sum, the result of the theorem follows by taking \(N_c= \max \{N_{-1},N_0,N_1\}\).

1.4 D. Proof of Lemma 7

Proof

Without loss of generality, we focus on the case when the matrix size \(N_x\) is even. With the definition of Strang’s circulant approximation, we have

$$\begin{aligned} A^x_j-s(A^x_j)=U_j^x+E_j^x, \end{aligned}$$

where \(j=-1\), 0, 1, and

$$\begin{aligned} U_j^x= & {} T_{N_x}(w^{(\alpha )}_{j,{N_x-1}},\ldots ,w^{(\alpha )}_{j,{N_x-N_c}},w^{(\alpha )}_{j,{N_x-N_c-1}}{-}w^{(\alpha )}_{j,{-N_c-1}},\ldots , w^{(\alpha )}_{j,{\frac{N_x}{2}+1}}{-}w^{(\alpha )}_{j,{-\frac{N_x}{2}+1}},\\&w^{(\alpha )}_{j,{\frac{N_x}{2}}},0,\ldots ,0;0;0,\ldots ,0,w^{(\alpha )}_{j,{-\frac{N_x}{2}}},w^{(\alpha )}_{j,{-\frac{N_x}{2}-1}}{-}w^{(\alpha )}_{j,{\frac{N_x}{2}-1}},\ldots ,\\&w^{(\alpha )}_{j,{-N_x+N_c+1}}{-}w^{(\alpha )}_{j,{N_c+1}},w^{(\alpha )}_{j,{-N_x+N_c}}, \ldots ,w^{(\alpha )}_{j,{1-N_x}}),\\ E_j^x= & {} -T_{N_x}(w^{(\alpha )}_{j,{-1}}, w^{(\alpha )}_{j,{-2}},\ldots ,w^{(\alpha )}_{j,{-N_c}},0,\ldots ,0;0;0,\ldots ,0,w^{(\alpha )}_{j,{N_c}},w^{(\alpha )}_{j,{N_c-1}},\ldots ,w^{(\alpha )}_{j,{1}}). \end{aligned}$$

Obviously, the rank of matrix \(E_j^x\) is \(2N_c\). On the other hand, since \(U_j^x\) is a Toeplitz matrix, with Lemma 6, we have

$$\begin{aligned} \Vert U_j^x\Vert _1\le & {} \max \left\{ \sum _{m=\frac{N_x}{2}}^{N_x-1}|w^{(\alpha )}_{j,m}|+\sum _{m=N_c+1}^{\frac{N_x}{2}-1}|w^{(\alpha )}_{j,-m}|, \sum _{m=\frac{N_x}{2}}^{N_x-1}|w^{(\alpha )}_{j,-m}|+\sum _{m=N_c+1}^{\frac{N_x}{2}-1}|w^{(\alpha )}_{j,m}|\right\} \\\le & {} \max \{2\epsilon ,2\epsilon \}=2\epsilon . \end{aligned}$$

In a similar way, we know that \(\Vert U_j^x\Vert _\infty \le 2\epsilon \), therefore,

$$\begin{aligned} \Vert U^x_j\Vert _2\le \sqrt{\Vert U^x_j\Vert _1 \cdot \Vert U^x_j\Vert _\infty }=2\epsilon . \end{aligned}$$

When \(N_x\) is odd, the theorem can be proven similarly.

1.5 E. Proof of Lemma 8

Proof

With the assumption that P is invertible, it holds that

$$\begin{aligned} {\hat{P}}-P= & {} P(P^{-1}{\hat{P}}-I_N)\\= & {} P\Big [\big ((I_N-\varTheta )P_r^{-1}+\varTheta \big (P_r+\frac{1}{\eta }I_N\big )^{-1}\big )\big ((I_{N}-\varTheta )P_r+\varTheta \big (P_r+\frac{1}{\eta }I_N\big )\big )-I_N\Big ]\\= & {} P\big [ (I_N-\varTheta )P_r^{-1}P_r -(I_N-\varTheta )P_r^{-1} \varTheta P_r + \varTheta \big (P_r+\frac{1}{\eta }I_N\big )^{-1}\big (P_r+\frac{1}{ \eta }I_N\big )\\&-\varTheta \big (P_r+\frac{1}{\eta }I_N\big )^{-1} (I_N-\varTheta )\big (P_r+\frac{1}{ \eta }I_N\big ) -I_N\big ]\\= & {} P\big [-(I_N-\varTheta )P_r^{-1} \varTheta P_r -\varTheta \big (P_r+\frac{1}{\eta }I_N\big )^{-1} (I_N-\varTheta )\big (P_r+\frac{1}{ \eta }I_N\big )\big ]. \end{aligned}$$

Since

$$\begin{aligned}&\mathrm{rank}(-(I_N-\varTheta )P_r^{-1} \varTheta P_r)\le \min \{\mathrm{rank}(I_N-\varTheta ),\mathrm{rank}(\varTheta )\},\\&\mathrm{rank}\big (-\varTheta \big (P_r+\frac{1}{\eta }I_N\big )^{-1} (I_N-\varTheta )\big (P_r+\frac{1}{ \eta }I_N\big )\big )\le \min \{\mathrm{rank}(\varTheta ),\mathrm{rank}(I_N-\varTheta )\}, \end{aligned}$$

it implies that

$$\begin{aligned} \mathrm{rank}({\hat{P}}-P)\le 2\min \{\mathrm{rank}(\varTheta ), \mathrm{rank}(I_N-\varTheta )\}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Deng, SW. & Lei, SL. A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains. J Sci Comput 80, 1033–1057 (2019). https://doi.org/10.1007/s10915-019-00966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00966-7

Keywords

Mathematics Subject Classification

Navigation