Skip to main content
Log in

The High-Order Mixed Mimetic Finite Difference Method for Time-Dependent Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

A Correction to this article was published on 16 August 2019

This article has been updated

Abstract

We propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of time-dependent diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. The method of lines (MOL) is used to combine spatial and temporal discretizations. The spatial scheme requires the definition of a high-order approximation of the divergence and gradient operators and the two inner products for the discrete analogs of fluxes and scalar unknowns. The discrete divergence and gradient operators are built according to a discrete duality relation. The inner product for the flux grid functions is built by explicitly imposing the conditions of consistency and stability. The family of semi-discrete mimetic methods is proved theoretically to be energy-stable as the corresponding continuous problem. Then, a full discretization is derived by combining via MOL the MFD method of order k with time marching schemes from the backward differentiation formula of order \(k+2\). Optimal order of accuracy is demonstrated for the scalar variable and verified numerically by solving the time-dependent diffusion problems with a variable diffusion tensor for k from 0 to 3 on three different unstructured mesh families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 16 August 2019

    We propose.

References

  1. Shashkov, M., Steinberg, S.: Support-operator finite-difference algorithms for general elliptic problems. J. Comput. Phys. 118(1), 131–151 (1995). https://doi.org/10.1006/jcph.1995.1085

    Article  MathSciNet  MATH  Google Scholar 

  2. Shashkov, M.: Conservative Finite-Difference Methods on General Grids. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  3. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method, MS&A. Modeling, Simulations and Applications, vol. 11, I edn. Springer, Berlin (2014)

    MATH  Google Scholar 

  4. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16(2), 275–297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196(37–40), 3682–3692 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Manzini, G., Lipnikov, K., Moulton, J.D., Shashkov, M.: Convergence analysis of the mimetic finite difference method for elliptic problems with staggered discretizations of diffusion coefficients. SIAM J. Numer. Anal. 55(6), 2956–2981 (2017). https://doi.org/10.1137/16M1108479

    Article  MathSciNet  MATH  Google Scholar 

  9. Gyrya, V., Lipnikov, K., Manzini, G.: The arbitrary order mixed mimetic finite difference method for the diffusion equation. ESAIM: Math. Modell. Numer. Anal. 50(3), 851–877 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lipnikov, K., Manzini, G., Moulton, J.D., Shashkov, M.: The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. J. Comput. Phys. 305, 111–126 (2016). https://doi.org/10.1016/j.jcp.2015.10.031

    Article  MathSciNet  MATH  Google Scholar 

  11. Beirão da Veiga, L., Manzini, G., Putti, M.: Post-processing of solution and flux for the nodal mimetic finite difference method. Numer. Methods PDEs 31(1), 336–363 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lipnikov, K., Manzini, G.: High-order mimetic method for unstructured polyhedral meshes. J. Comput. Phys. 272, 360–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gyrya, V., Lipnikov, K., Manzini, G., Svyatskiy, D.: M-adaptation in the mimetic finite difference method. Math. Models Methods Appl. Sci. 24(8), 1621–1663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brezzi, F., Buffa, A., Manzini, G.: Mimetic inner products for discrete differential forms. J. Comput. Phys. 257–Part B, 1228–1259 (2014)

    Article  MATH  Google Scholar 

  15. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49(5), 1737–1760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lipnikov, K., Manzini, G., Svyatskiy, D.: Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230(7), 2620–2642 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cangiani, A., Gardini, F., Manzini, G.: Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200(9–12), 1150–1160 (2011). https://doi.org/10.1016/j.cma.2010.06.011

    Article  MathSciNet  MATH  Google Scholar 

  18. Lipnikov, K., Manzini, G., Brezzi, F., Buffa, A.: The mimetic finite difference method for 3D magnetostatics fields problems. J. Comput. Phys. 230(2), 305–328 (2011). https://doi.org/10.1016/j.jcp.2010.09.007

    Article  MathSciNet  MATH  Google Scholar 

  19. Beirão da Veiga, L., Droniou, J., Manzini, G.: A unified approach to handle convection term in finite volumes and mimetic discretization methods for elliptic problems. IMA J. Numer. Anal. 31(4), 1357–1401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48(4), 1419–1443 (2010). https://doi.org/10.1137/090757411

    Article  MathSciNet  MATH  Google Scholar 

  21. Beirão da Veiga, L., Gyrya, V., Lipnikov, K., Manzini, G.: Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228(19), 7215–7232 (2009). 10.1016/j.jcp.2009.06.034

    Article  MathSciNet  MATH  Google Scholar 

  22. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Convergence analysis of the high-order mimetic finite difference method. Numerische Mathematik 113(3), 325–356 (2009). https://doi.org/10.1007/s00211-009-0234-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Cangiani, A., Manzini, G., Russo, A.: Convergence analysis of a mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47(4), 2612–2637 (2009). https://doi.org/10.1137/080717560

    Article  MathSciNet  MATH  Google Scholar 

  24. Cangiani, A., Manzini, G.: Flux reconstruction and solution post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Eng. 197(9–12), 933–945 (2008). https://doi.org/10.1016/j.cma.2007.09.019

    Article  MathSciNet  MATH  Google Scholar 

  25. Beirão da Veiga, L., Manzini, G.: A higher-order formulation of the mimetic finite difference method. SIAM J. Sci. Comput. 31(1), 732–760 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Beirão da Veiga, L., Manzini, G.: An a-posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Int. J. Numer. Methods Eng. 76(11), 1696–1723 (2008). https://doi.org/10.1002/nme.2377

    Article  MathSciNet  MATH  Google Scholar 

  27. Antonietti, P.F., Bigoni, N., Verani, M.: Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56(1), 14–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Antonietti, P.F., Beirão da Veiga, L., Verani, M.: A mimetic discretization of elliptic obstacle problems. Math. Comp. 82(283), 1379–1400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Antonietti, P.F., Beirão da Veiga, L., Bigoni, N., Verani, M.: Mimetic finite differences for nonlinear and control problems. Math. Models Methods Appl. Sci. 24(8), 1457–1493 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM Math. Model. Numer. Anal. 50(3), 809–832 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Antonietti, P.F., Beirão da Veiga, L., Lovadina, C., Verani, M.: Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal. 51(1), 654–675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Antonietti, P.F., Bigoni, N., Verani, M.: Mimetic finite difference approximation of quasilinear elliptic problems. Calcolo 52(1), 45–67 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Computational Physics 257–Part B, 1163–1227 (2014). Review paper

    Article  MathSciNet  MATH  Google Scholar 

  34. Lipnikov, K., Manzini, G.: Discretization of mixed formulations of elliptic problems on polyhedral meshes. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114, pp. 309–340. Springer, Berlin (2016)

    Google Scholar 

  35. Wachspress, E.: A Rational Finite Element Basis. Academic Press, Cambridge (1975)

    MATH  Google Scholar 

  36. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Meth. Eng. 61(12), 2045–2066 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(08), 1575–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Di Pietro, D.A., Ern, A.: Hybrid high-order methods for variable diffusion problems on general meshes. Comptes Rendus Mathématique 353, 31–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  40. Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications. Springer, Berlin (2011)

    Google Scholar 

  41. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 119–214 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Manzini, G., Russo, A., Sukumar, N.: New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24(8), 1665–1699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Di Pietro, D.A., Droniou, J., Manzini, G.: Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355, 397–425 (2018). https://doi.org/10.1016/j.jcp.2017.11.018

    Article  MathSciNet  MATH  Google Scholar 

  47. Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  48. Evans, C.L.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. AMS, Providence (1998)

    Google Scholar 

  49. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  50. Johnson, C., Thomee, V.: Error estimates for some mixed finite element methods for parabolic type problems. ESAIM: Math. Modell. Numer. Anal.- Modélisation Mathématique et Analyse Numérique 15(1), 41–78 (1981)

    MathSciNet  MATH  Google Scholar 

  51. Boffi, D., Gastaldi, L.: Analysis of finite element approximation of evolution problems in mixed form. SIAM J. Numer. Anal. 42(4), 1502–1526 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bause, M., Radu, F.A., Köcher, U.: Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space. Numer. Math. 137(4), 773–818 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Gao, H., Qiu, W.: Error analysis of mixed finite element methods for nonlinear parabolic equations. J. Sci. Comput. 77(3), 1660–1678 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Laboratory Directed Research and Development program (LDRD), under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy (DOE) at Los Alamos National Laboratory operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396, and the Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics of the DOE Office of Science. The University of Padova “Project SID-2016- Approximation and discretization of PDEs on Manifolds for Environmental Modeling” is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Putti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: equation formatting and reference tagging errors have been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzini, G., Maguolo, G. & Putti, M. The High-Order Mixed Mimetic Finite Difference Method for Time-Dependent Diffusion Problems. J Sci Comput 80, 1805–1830 (2019). https://doi.org/10.1007/s10915-019-01002-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01002-4

Keywords

Mathematics Subject Classification

Navigation