Skip to main content
Log in

An Efficient Hybrid Method for Solving Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a hybrid method suitable for solving the Euler equations using high order methods has been proposed. The method was implemented and validated with a seventh order WENO scheme in OpenFOAM®. The hybrid method combines a simple MUSCL-type flux approach and a characteristic flux approach. In the MUSCL-type flux approach, the inviscid fluxes are computed using approximate Riemann solvers HLL and HLLC schemes based on the WENO-reconstructed state variables. Hence, this is dubbed as the VF (variable-based flux) approach. In critical regions where VF may produce spurious oscillations, a novel, low-dissipation HLL-based CF (characteristic flux) approach is applied. Critical regions were identified using a modified Bhagatwala–Lele shock sensor. The VF/CF hybrid method has been shown to produce high-resolution, essentially non-oscillatory results for a number of 1D and 2D problems at a fraction of the cost of a pure CF approach. Moreover, a 2D advection problem was designed to investigate the choice of state variables and flux schemes. The results have shed more light on the relation between Kelvin–Helmholtz roll-ups and numerical instabilities along slip lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjögreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229, 1213–1237 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41, 192–300 (2005)

    Google Scholar 

  4. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    MATH  Google Scholar 

  8. Shen, Y., Zha, G.: Improved seventh-order WENO scheme. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics (2010)

  9. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Feng, H., Hu, F., Wang, R.: A new mapped weighted essentially non-oscillatory scheme. J. Sci. Comput. 51, 449–473 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Feng, H., Huang, C., Wang, R.: An improved mapped weighted essentially non-oscillatory scheme. Appl. Math. Comput. 232, 453–468 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Acker, F., de Borges, R., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726–753 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Wang, R., Feng, H., Huang, C.: A new mapped weighted essentially non-oscillatory method using rational mapping function. J. Sci. Comput. 67, 540–580 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Godunov, S.K.: A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. SB MATH 47, 357–393 (1959)

    Google Scholar 

  15. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    MATH  Google Scholar 

  16. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, New York (2013)

    Google Scholar 

  17. Qiu, J., Shu, C.W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Ren, Y.-X., Liu, M.E., Zhang, H.: A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 365–386 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Kim, D., Kwon, J.H.: A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis. J. Comput. Phys. 210, 554–583 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Costa, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204, 209–218 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Hu, X.Y., Wang, B., Adams, N.A.: An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. J. Comput. Phys. 301, 415–424 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Peng, J., Zhai, C., Ni, G., Yong, H., Shen, Y.: An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations. Comput. Fluids. 179, 34–51 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Lee, Y., Yao, W., Fan, X.: A low-dissipation scheme based on OpenFoam designed for large eddy simulation in compressible flow. In: 21st AIAA International Space Planes and Hypersonics Technologies Conference. American Institute of Aeronautics and Astronautics (2017)

  26. Bhagatwala, A., Lele, S.K.: A modified artificial viscosity approach for compressible turbulence simulations. J. Comput. Phys. 228, 4965–4969 (2009)

    MATH  Google Scholar 

  27. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    MATH  Google Scholar 

  28. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656–672 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Titarev, V.A., Toro, E.F.: Finite-volume WENO schemes for three-dimensional conservation laws. J. Comput. Phys. 201, 238–260 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Ritos, K., Kokkinakis, I.W., Drikakis, D.: Physical insight into the accuracy of finely-resolved iLES in turbulent boundary layers. Comput. Fluids 169, 309–316 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Ritos, K., Kokkinakis, I.W., Drikakis, D.: Performance of high-order implicit large eddy simulations. Comput. Fluids 173, 307–312 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. In: Hussaini, M.Y., van Leer, B., Van Rosendale, J. (eds.) Upwind and High-Resolution Schemes, pp. 53–79. Springer, Berlin (1997)

    Google Scholar 

  34. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    MATH  Google Scholar 

  35. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    MathSciNet  MATH  Google Scholar 

  36. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. In: Upwind and High-Resolution Schemes, pp. 328–374. Springer, Berlin, Heidelberg (1989)

    Google Scholar 

  37. Lax, P., Liu, X.: Solution of two-dimensional riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Pandolfi, M., D’Ambrosio, D.: Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon. J. Comput. Phys. 166, 271–301 (2001)

    MathSciNet  MATH  Google Scholar 

  41. Quirk, J.J.: A contribution to the great Riemann solver debate. In: Hussaini, M.Y., van Leer, B., Van Rosendale, J. (eds.) Upwind and High-Resolution Schemes, pp. 550–569. Springer, New York (1997)

    Google Scholar 

  42. Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow problems. J. Comput. Phys. 2, 306–331 (1968)

    MathSciNet  MATH  Google Scholar 

  43. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    MathSciNet  MATH  Google Scholar 

  44. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

    MathSciNet  MATH  Google Scholar 

  45. Vevek, U.S., Zang, B., New, T.H.: On alternative setups of the double Mach reflection problem. J. Sci. Comput. 78, 1291–1303 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for the present work by Singapore Ministry of Education AcRF Tier-2 Grant (MOE2014-T2-1-002) and support for the first author through Graduate Research Officer scholarship from School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore. The authors would also like to thank Prof Chan Wai Lee for taking his time to discuss certain aspects of the numerical methods which had a major influence on the direction of this paper. The computational work for this article was partially performed on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. New.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For each sub-stencil j, the fourth order polynomial approximation \( \left( {\rho_{i + 1/2} } \right)_{j} \) and the three polynomial coefficients \( a_{k,j} \) are determined from the cell averages in that sub-stencil using is a \( 4 \times 4 \) reconstruction matrix \( {\mathbf{R}}_{j} \) as shown below.

$$ \left( {\begin{array}{*{20}c} {\rho_{i + 1/2} } \\ {a_{1} } \\ {a_{2} } \\ {a_{3} } \\ \end{array} } \right)_{j} = {\mathbf{R}}_{j} \left( {\begin{array}{*{20}c} {\overline{{\rho_{i - 3 + j} }} } \\ {\overline{{\rho_{i - 2 + j} }} } \\ {\overline{{\rho_{i - 1 + j} }} } \\ {\overline{{\rho_{i + j} }} } \\ \end{array} } \right) $$
(A1.1)

For the case of uniform cells, the sub-stencil reconstruction matrices are given by:

$$ \begin{aligned} {\mathbf{R}}_{0} = \left[ {\begin{array}{*{20}c} { - \tfrac{1}{4}} & {\tfrac{13}{12}} & { - \tfrac{23}{12}} & {\tfrac{25}{12}} \\ { - \tfrac{11}{12}} & {\tfrac{15}{4}} & { - \tfrac{23}{4}} & {\tfrac{35}{12}} \\ { - \tfrac{3}{4}} & {\tfrac{11}{4}} & { - \tfrac{13}{4}} & {\tfrac{5}{4}} \\ { - \tfrac{1}{6}} & {\tfrac{1}{2}} & { - \tfrac{1}{2}} & {\tfrac{1}{6}} \\ \end{array} } \right] \\ {\mathbf{R}}_{1} = \left[ {\begin{array}{*{20}c} {\tfrac{1}{12}} & { - \tfrac{5}{12}} & {\tfrac{13}{12}} & {\tfrac{1}{4}} \\ {\tfrac{1}{12}} & { - \tfrac{1}{4}} & { - \tfrac{3}{4}} & {\tfrac{11}{12}} \\ { - \tfrac{1}{4}} & {\tfrac{5}{4}} & { - \tfrac{7}{4}} & {\tfrac{3}{4}} \\ { - \tfrac{1}{6}} & {\tfrac{1}{2}} & { - \tfrac{1}{2}} & {\tfrac{1}{6}} \\ \end{array} } \right] \\ {\mathbf{R}}_{2} = \left[ {\begin{array}{*{20}c} { - \tfrac{1}{12}} & {\tfrac{7}{12}} & {\tfrac{7}{12}} & { - \tfrac{1}{12}} \\ {\tfrac{1}{12}} & { - \tfrac{5}{4}} & {\tfrac{5}{4}} & { - \tfrac{1}{12}} \\ {\tfrac{1}{4}} & { - \tfrac{1}{4}} & { - \tfrac{1}{4}} & {\tfrac{1}{4}} \\ { - \tfrac{1}{6}} & {\tfrac{1}{2}} & { - \tfrac{1}{2}} & {\tfrac{1}{6}} \\ \end{array} } \right] \\ {\mathbf{R}}_{3} = \left[ {\begin{array}{*{20}c} {\tfrac{1}{4}} & {\tfrac{13}{12}} & { - \tfrac{5}{12}} & {\tfrac{1}{12}} \\ { - \tfrac{11}{12}} & {\tfrac{3}{4}} & {\tfrac{1}{4}} & { - \tfrac{1}{12}} \\ {\tfrac{3}{4}} & { - \tfrac{7}{4}} & {\tfrac{5}{4}} & { - \tfrac{1}{4}} \\ { - \tfrac{1}{6}} & {\tfrac{1}{2}} & { - \tfrac{1}{2}} & {\tfrac{1}{6}} \\ \end{array} } \right] \\ {\mathbf{R}}_{4} = \left[ {\begin{array}{*{20}c} {\tfrac{25}{12}} & { - \tfrac{23}{12}} & {\tfrac{13}{12}} & { - \tfrac{1}{4}} \\ { - \tfrac{35}{12}} & {\tfrac{23}{4}} & { - \tfrac{15}{4}} & {\tfrac{11}{12}} \\ {\tfrac{5}{4}} & { - \tfrac{13}{4}} & {\tfrac{11}{4}} & { - \tfrac{3}{4}} \\ { - \tfrac{1}{6}} & {\tfrac{1}{2}} & { - \tfrac{1}{2}} & {\tfrac{1}{6}} \\ \end{array} } \right] \\ \end{aligned} $$
(A1.2)

Appendix B

Given the third order polynomial

$$ \rho_{j} \left( x \right) = \left( {\rho_{i + 1/2} } \right)_{j} + \sum\limits_{k = 1}^{3} {a_{k,j} x^{k} } $$
(A2.1)

the smoothness indicators are defined as

$$ IS_{j,\;L} = \sum\limits_{k = 1}^{3} {\int\limits_{{x_{i} - \Delta x/2}}^{{x_{i} + \Delta x/2}} {\Delta x^{2k - 1} \left( {\frac{{d^{k} \rho_{j} }}{{dx^{k} }}} \right)^{2} dx} } \quad {\kern 1pt} IS_{j,\;R} = \sum\limits_{k = 1}^{3} {\int\limits_{{x_{i + 1} - \Delta x/2}}^{{x_{i + 1} + \Delta x/2}} {\Delta x^{2k - 1} \left( {\frac{{d^{k} \rho_{j} }}{{dx^{k} }}} \right)^{2} dx} } $$
(A2.2)

Since the reconstruction direction x is taken with respect to the face centre \( \varvec{x}_{f} \) and non-dimensionalized with \( \Delta x = \left\| {\varvec{x}_{\text{P}} - \varvec{x}_{\text{N}} } \right\| \), the above expressions can be simplified and generalized as follows.

$$ IS_{j,\;K} = r\sum\limits_{k = 1}^{3} {\int\limits_{0}^{r} {\left( {\frac{{d^{k} \rho_{j} }}{{dx^{k} }}} \right)^{2} dx} } \quad {\text{where}}\quad r = \left\{ {\begin{array}{*{20}c} { - 1,} & {{\text{if }}K = L} \\ { + 1,} & {{\text{f }}K = R} \\ \end{array} } \right. $$
(A2.3)

Substituting Eq. (A2.1) into Eq. (A2.3), the expression in Eq. (13) can be obtained as follows.

$$ \begin{aligned} IS_{j,\;K} &= r\left[ {\int\limits_{0}^{r} {\left( {a_{0,\;j} + 2a_{1,\;j} x + 3a_{2,\;j} x^{2} } \right)^{2} dx} + \int\limits_{0}^{r} {\left( {2a_{1,\;j} + 6a_{2,\;j} x} \right)^{2} dx} + \int\limits_{0}^{r} {\left( {6a_{2,\;j} } \right)^{2} dx} } \right] \\ & = r\left\{ \begin{array}{l} \left[ {a_{0,\;j}^{2} x + 2a_{0,\;j} a_{1,\;j} x^{2} + 2a_{0,\;j} a_{2,\;j} x^{3} + \tfrac{4}{3}a_{1,\;j}^{2} x^{3} + 3a_{1,\;j} a_{2,\;j} x^{4} + \tfrac{9}{5}a_{2,\;j}^{2} x^{5} } \right]_{0}^{r} \hfill \\ + \left[ {4a_{1,\;j}^{2} x + 12a_{1,\;j} a_{2,\;j} x^{2} + 12a_{2,\;j}^{2} x^{3} } \right]_{0}^{r} + \left[ {36a_{2,\;j}^{2} x} \right]_{0}^{r} \hfill \\ \end{array} \right\} \\ & = a_{0,\;j}^{2} + 2ra_{0,\;j} a_{1,\;j} + 2a_{0,\;j} a_{2,\;j} + \tfrac{16}{3}a_{1,\;j}^{2} + 15ra_{1,\;j} a_{2,\;j} + \tfrac{249}{5}a_{2,\;j}^{2} \\ &= \left( {a_{0,\;j} + ra_{1,\;j} + a_{2,\;j} } \right)^{2} + \tfrac{13}{3}\left( {a_{1,\;j} + \tfrac{3}{2}ra_{2,\;j} } \right)^{2} + \tfrac{781}{20}a_{2,\;j}^{2} \\ \end{aligned} $$
(A2.4)

Note that in the third and fourth lines of the above derivation, the following identity was used to simplify the result.

$$ r^{n} = \left\{ {\begin{array}{*{20}c} {1,} & {{\text{if }}n{\text{ is even}}} \\ {r,} & {{\text{if }}n{\text{ is odd}}} \\ \end{array} } \right. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vevek, U.S., Zang, B. & New, T.H. An Efficient Hybrid Method for Solving Euler Equations. J Sci Comput 81, 732–762 (2019). https://doi.org/10.1007/s10915-019-01033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01033-x

Keywords

Navigation