Skip to main content
Log in

Capturing Composite Waves in Non-convex Special Relativistic Hydrodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We deal with the numerical approximation of the complex structure in special relativistic hydrodynamics (SRHD) when the system is closed with a non-convex equation of state (EOS). We consider a recently introduced phenomenological EOS (Ibáñez et al. in MNRAS 476:1100, 2018) that mimics the loss of classical behavior when the fluid enters into a non-convex—thermodynamically—region in the relativistic regime. We introduce a flux formulation to approximate the solution of Riemann problems in SRHD such that the non-classical dynamics is detected and well resolved. We also design a strategy to recover primitive variables based on iterative procedures and present a detailed analysis providing a sufficient condition to ensure convergence. We propose a set of Riemann problems in one and two dimensions including blast waves, colliding slabs and expanding slabs, illustrating the strong complex dynamics arising in non-convex SRHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aloy, M.A., Ibáñez, J.M., Sanchis-Gual, N., Obergaulinger, M., Font, J.A., Serna, S., Marquina, A.: Neutron star collapse and gravitational waves with a non-convex equation of state. MNRAS 484, 4980–5008 (2019)

    Google Scholar 

  2. Anile, A.M.: Relativistic Fluids and Magneto-Fluids. Cambridge Univ. Press, Cambridge (1989)

    MATH  Google Scholar 

  3. Argrow, B.M.: Computational analysis of dense gas shock tube flow. Shock Waves 6, 241–248 (1996)

    MATH  Google Scholar 

  4. Bauswein, A., Janka, H.-T., Oechslin, R.: Testing approximations of thermal effects in neutron star merger simulations. Phys. Rev. D 82, 084043 (2010)

    Google Scholar 

  5. Bethe, H.A.: The Theory of Shock Waves for an Arbitrary Equation of State. Technical Report 545 Office of Scientific Research and Development (1942)

  6. Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75(2), 400–422 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Cinnella P., Corre, C.: APS Division of Fluid Dynamics Meeting Abstracts (2006)

  8. Cinnella, P.: Transonic flows of dense gases over finite wings. Phys. Fluids 20, 046103 (2008)

    MATH  Google Scholar 

  9. Del Zanna, L., Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows. A&A 390, 1177 (2002)

    MATH  Google Scholar 

  10. Donat, R., Marquina, A.: Capturing shock reflections: an improved flux formula. J. Comput. Phys. 125, 42–58 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Donat, R., Font, J.A., Ibáñez, J.M., Marquina, A.: A flux-split algorithm applied to relativistic flow. J. Comput. Phys. 146, 58–81 (1998)

    MATH  Google Scholar 

  12. Font, J.A., Ibáñez, J.M., Marquina, A., Martí, J.M.: Multidimensional relativistic hydrodynamics: characteristic fields and modern high-resolution shock-capturing schemes. Astron. Astrophys. 282, 304 (1994)

    Google Scholar 

  13. Guardone, A., Vigevano, L.: Roe Linearization for the van der Waals Gas. J. Comput. Phys. 175, 50–78 (2002)

    MATH  Google Scholar 

  14. Guardone, A., Zamfirescu, C., Colonna, P.: Maximum intensity of rarefaction shock waves for dense gases. J. Fluid Mech. 642, 127 (2010)

    MATH  Google Scholar 

  15. Haensel, P., Levenfish, K.P., Yakovlev, D.G.: Adiabatic index of dense matter and damping of neutron star pulsations. Astron. Astrophys. 394, 213 (2002)

    Google Scholar 

  16. Haensel, P., Potekhin, A.Y.: Analytical representations of unified equations of state of neutron-star matter. Astron. Astrophys. 428, 191 (2004)

    MATH  Google Scholar 

  17. Haensel, P., Potekhin, A.Y., Yakovlev, D.G. (eds.): Neutron Stars 1: Equation of State and Structure. Astrophysics and Space Science Library, vol. 326. Springer-Verlag, New York (2007)

    Google Scholar 

  18. Heuze, O., Jaouen, S., Jourdren, H.: Dissipative issue of high-order shock capturing schemes with non-convex equations of state. J. Comput. Phys. 228, 833–860 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Ibáñez, J.M., Cordero-Carrión, I., Martí, J.M., Miralles, J.A.: On the convexity of relativistic hydrodynamics. Class. Quantum Gravity 30, 057002 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Ibáñez, J.M., Marquina, A., Serna, S., Aloy, M.A.: Anomalous dynamics triggered by a non-convex equation of state in relativistic flows. MNRAS 476, 1100 (2018)

    Google Scholar 

  21. Janka, H.-T., Hanke, F., Hüdepohl, L., Marek, A., Müller, B., Obergaulinger, M.: Core-collapse supernovae: reflections and directions. Prog. Theor Exp Phys 2012(1), 01A309 (2012)

    Google Scholar 

  22. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shocks Waves. SIAM, Philadelphia (1973)

    MATH  Google Scholar 

  23. LeVeque, R.J., Mihalas, D., Dorfi, E.A., Müller, E.: Computational Methods for Astrophysical Fluid Flow, Saas-Fee Advanced Courses, vol. 27. Springer, New York (1998)

    Google Scholar 

  24. LIGO Scientific Collaboration and Virgo Collaboration: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

  25. Martí, J.M., Miralles, J.A., Diaz-Alonso, J., Ibanez, J.M.: Field theoretical model for nuclear and neutron matter. IV-Radial oscillations of warm cores in neutron stars. Astrophys. J. 329, 780 (1988)

    Google Scholar 

  26. Martí, J.M., Müller, E.: Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6, 7 (2003). https://doi.org/10.12942/lrr-2003-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Martí, J.M., Müller, E.: Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics. Living Rev. Comput. Astrophys. 1, 3 (2015). https://doi.org/10.1007/lrca-2015-3

    Article  Google Scholar 

  28. Martí, J.M., Müller, E., Font, J.A., Ibáñez, J.M., Marquina, A.: Morphology and dynamics of relativistic jets. Astrophys. J. 479(1), 151 (1997)

    Google Scholar 

  29. Marquina, A., Martí, J.M., Ibáñez, J.M., Miralles, J.A., Donat, R.: Ultrarelativistic hydrodynamics-high-resolution shock-capturing methods. Astron. Astrophys. 258, 566 (1992)

    Google Scholar 

  30. Marquina, A.: Local piecewise hyperbolic reconstructions for nonlinear scalar conservation laws. SIAM J. Sci. Comput. 15, 892–915 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Menikoff, R.: Empirical equations of state for solids. In: Horie, Y. (ed.) ShockWave Science and Technology Reference Library, pp. 143–188. Springer, Berlin (2007)

    Google Scholar 

  32. Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61(1), 75–130 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Mignone, A., Bodo, G.: A HLLC Riemann solver for relativistic flows-I. Hydrodynamics. MNRAS 364, 126–136 (2005)

    Google Scholar 

  34. Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    Google Scholar 

  35. Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  36. Serna, S., Marquina, A.: Capturing shock waves in inelastic granular gases. J. Comput. Phys. 209(2), 787–795 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Serna, S.: A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations. J. Comput. Phys 228, 4232–4247 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Serna, S., Marquina, A.: Anomalous wave structure in magnetized materials described by non-convex equations of state. Phys. Fluids 26, 016101 (2014)

    MATH  Google Scholar 

  39. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, 2. J. Comput. Phys. 83(1), 32–78 (1989)

    MathSciNet  MATH  Google Scholar 

  40. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem of two-dimensional gas dynamics. SIAM J. Sci. Comput 14, 1394–1414 (1993)

    MathSciNet  MATH  Google Scholar 

  41. Thompson, P.A.: A fundamental derivative of gas dynamics. Phys. Fluids 14, 1843–1849 (1971)

    MATH  Google Scholar 

  42. Voss A.: PhD thesis, University of Wuppertal (2005)

  43. Wu, K., Tang, H.: High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics. J. Comput. Phys. 298, 539–564 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Wu, K., Tang, H.: Physical-constraint-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state. Astrophys. J. Suppl. 228, 3 (2017)

    Google Scholar 

  45. Wu, K.: Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics. Phys. Rev. D 95, 103001 (2017)

    MathSciNet  Google Scholar 

  46. Wu, K., Tang, H.: Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 27, 1871–1928 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Zeldovich, Y.: On the possibility of rarefaction shock waves. Zh. Eksp. Teor. Fiz. 4, 363 (1946)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and recommendations which helped to improve the manuscript. Work partially supported by the Spanish Government Grants: PGC2018-101119-B-I00 and PGC2018-095984-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Serna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marquina, A., Serna, S. & Ibáñez, J.M. Capturing Composite Waves in Non-convex Special Relativistic Hydrodynamics. J Sci Comput 81, 2132–2161 (2019). https://doi.org/10.1007/s10915-019-01074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01074-2

Keywords

Navigation