Skip to main content
Log in

Discrete Kernel Preserving Model for 3D Electron–Optical Phonon Scattering Under Arbitrary Band Structures

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Li et al. (J Sci Comput 62:317–335, 2015), we thoroughly investigated the structure of the kernel space of the discrete one-dimensional (1D) non-polar optical phonon (NPOP)-electron scattering matrix, and proposed a strategy to setup grid points so that the uniqueness of the discrete scattering kernel is preserved. In this paper, we extend the above work to the three dimensional (3D) case, and also investigate the polar optical phonon (POP)-electron case. In numerical discretization, it is important to get a discretization scattering matrix that keeps as many properties of the continuous scattering operator as possible. We prove that for the 3D NPOP-electron scattering, (i) the dimension of the kernel space of the discrete scattering matrix is one and (ii) the equilibrium distribution is constant with respect to the angular coordinates as long as the mesh over the energy interval obeys the rule proposed in Li et al. (2015). For the POP-electron scattering, (i) is also kept under the same condition, but to keep (ii) becomes a challenging task, since generally a simple uniform mesh in the azimuth and polar angular coordinates will not preserve (ii). Based on high degree of symmetry of the Platonic solids and regular pyramids, we propose two conditions and prove they are sufficient to guarantee (ii). Numerical experiments strongly support our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carrillo, J.A., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transient of devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)

    Article  MathSciNet  Google Scholar 

  2. Hu, Z., Li, R., Lu, T., Wang, Y., Yao, W.: Simulation of an \(n^{+}\)\(n\)\(n^{+}\) diode by using globally-hyperbolically-closed high-order moment models. J. Sci. Comput. 59, 761–774 (2014)

    Article  MathSciNet  Google Scholar 

  3. Poupaud, F.: On a system of nonlinear Boltzmann equations of semiconductor physics. SIAM J. Appl. Math. 50, 1593–1606 (1990)

    Article  MathSciNet  Google Scholar 

  4. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics, vol. 773. Springer, Berlin (2009)

    Book  Google Scholar 

  5. Yao, W., Li, R., Lu, T., Liu, X., Du, G., Zhao, K.: Globally hyperbolic moment method for BTE including phonon scattering, In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 300–303, Glasgow, Scotland, UK (3–5 Sept 2013)

  6. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system in one dimensional space. J. Math. Sci. 11, 547–571 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67, 464–518 (2013)

    Article  MathSciNet  Google Scholar 

  8. Li, R., Lu, T., Yao, W.: Discrete kernel preserving model for 1D optical electron–phonon scattering. J. Sci. Comput. 62, 317–335 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér. I(320), 639–644 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34(5), 1865–1883 (1997)

    Article  MathSciNet  Google Scholar 

  11. Grasser, T., Tang, T.-W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91, 251–274 (2003)

    Article  Google Scholar 

  12. Kane, E.O.: Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249–261 (1957)

    Article  Google Scholar 

  13. Cassi, D., Riccò, B.: An analytical model of the energy distribution of hot electrons. IEEE Trans. Electron. Dev. 37, 1514–1521 (1990)

    Article  Google Scholar 

  14. Register, L.F.: Microscopic basis for a sum rule for polar-optical-phonon scattering of carriers in heterostructures. Phys. Rev. B 45, 8756–8759 (1992)

    Article  Google Scholar 

  15. Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Clarendon, Oxford (1960)

    MATH  Google Scholar 

  16. Grahn, H.: Introduction to Semiconductor Physics. World Scientific, Singapore (1999)

    Book  Google Scholar 

  17. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  18. Majorana, A.: Equilibrium solutions of the non-linear Boltzmann equations for an electron gas in a semiconductor. Il Nuovo Cimento B 108, 871–877 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by NSFC (11801183, 91630130, 11671038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqi Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Main Results Retrieved from [8]

In this section, we organize main results retrieved from our previous paper [8], which are used frequently to support our proofs in this paper.

Lemma 5

Linear ODEs system

$$\begin{aligned} \dfrac{\,\mathrm {d}{{{\varvec{g}}}}}{\,\mathrm {d}{t}} = M {{\varvec{g}}}, M \in {\mathbb {R}}^{N\times N}, \end{aligned}$$
(38)

satisfies the following (Q1)–(Q5), only if M satisfies all the conditions listed in Table 4.

  1. (Q1)
    $$\begin{aligned} \text {rank}(M) = N-1. \end{aligned}$$
  2. (Q2)

    Let \({{\varvec{g}}}\ne {\varvec{0}}\), and at least one of the entries of \({{\varvec{g}}}\) is positive, satisfy

    $$\begin{aligned} M{{\varvec{g}}}= {\varvec{0}}, \end{aligned}$$

    then the entries of \({{\varvec{g}}}\) are all positive.

  3. (Q3)

    Every nonzero eigenvalue of M has a negative real part.

  4. (Q4)

    \(\lambda = 0\) is a semisimple eigenvalue of M.

  5. (Q5)

    For arbitrary \({{\varvec{g}}}(0) \ne {\varvec{0}}\), there exists a unique \({\varvec{g}} \in \mathrm {Ker}(M)\) such that the solutions of (38) satisfying

    $$\begin{aligned} \parallel {{\varvec{g}}}(t) - {{\varvec{g}}}\parallel _{l^2} \le \exp (-Ct)\parallel {{\varvec{g}}}(0) - {{\varvec{g}}}\parallel _{l^2}, \quad C>0, \end{aligned}$$

    and \({{\varvec{g}}}\) satisfies \({{\varvec{g}}}(0)-{{\varvec{g}}}\in \mathrm {Ker}^{\perp }(M)\).

Readers interested in the proof of Lemma 5 are recommended to refer to the proof of Theorem 1, Lemma 3, Lemma 1, Theorem 2 and Theorem 3, respectively, of our previous paper [8].

Table 4 The coefficient matrix M of (38)

If M is reducible, we could use transformations \({\mathbb {T}}_P\) and \({\mathbb {V}}_P\) to reformulate M and \({{\varvec{g}}}\) as

$$\begin{aligned} {\mathbb {T}}_P(M) = P^T M P = \left[ \begin{array}{ccc} M_1 &{} &{} \\ &{} \ddots &{} \\ &{} &{} M_s \end{array}\right] ,\quad {\mathbb {V}}_P({{\varvec{g}}}) = P {{\varvec{g}}}= \left( \begin{array}{c} {{\varvec{g}}}_1 \\ \vdots \\ {{\varvec{g}}}_s \end{array} \right) , \end{aligned}$$
(39)

where P is a permutation matrix. Apparently, if M still satisfies the last three conditions listed in Table 4, then we could find a permutation matrix P such that every diagonal-block \(M_i\) of \({\mathbb {T}}_P(M)\) satisfies all the conditions in Table 4. As a result, any of the ODEs systems

$$\begin{aligned} \dfrac{\,\mathrm {d}{{{\varvec{g}}}_i}}{\,\mathrm {d}{t}} = M_i {{\varvec{g}}}_i, \quad \forall i = 1,\ldots ,s \end{aligned}$$

satisfies Lemma 5.

When M is reducible, the following Lemma 6 is obviously established.

Lemma 6

If M is reducible but satisfies all the other three conditions in Table 4, the M can also be reformulated as (39) with a proper \({\mathbb {T}}_P\), where

$$\begin{aligned} \mathrm {rank}(M) = N - s, \quad \mathrm {Dim}(\mathrm {Ker}(M))= s. \end{aligned}$$

In addition

$$\begin{aligned} \mathrm {Ker}(M) = \left\{ c_1\left( \begin{array}{c} {{\varvec{g}}}_1 \\ {\varvec{0}} \\ \vdots \\ {\varvec{0}} \end{array}\right) + c_2\left( \begin{array}{c} {\varvec{0}} \\ {{\varvec{g}}}_2 \\ \vdots \\ {\varvec{0}} \end{array}\right) + c_s\left( \begin{array}{c} {\varvec{0}} \\ {\varvec{0}} \\ \vdots \\ {{\varvec{g}}}_s \end{array}\right) :\quad c_i > 0,\quad {{\varvec{g}}}_i \in \mathrm {Ker}(M_i) \right\} . \end{aligned}$$
(40)

Specifically, the discrete 1D scattering system discussed in [8] has the form of (38), where

$$\begin{aligned} \begin{array}{ccc} M = (-2\varLambda + S),&\quad \varLambda = \mathrm {diag}\{ \lambda _1,\ldots ,\lambda _N\},&\quad S = \{s_{ij}\}_{i,j=1,\ldots ,N}, \end{array} \end{aligned}$$
(41)

in which

$$\begin{aligned}\begin{aligned} s_{ij}&= \frac{1}{\varDelta k_j} \left( \int _{I_{i}(E-\epsilon _p)\cap I_j(E)} \frac{s_1^{\mathrm {npo}}(E,E+\epsilon _p)}{\sqrt{2(E+\epsilon _p)}\sqrt{2E}} \,\mathrm {d}E + \int _{I_{i}(E+\epsilon _p)\cap I_j(E)} \frac{s_{-1}^{\mathrm {npo}}(E,E-\epsilon _p)}{\sqrt{2(E-\epsilon _p)}\sqrt{2E}} \,\mathrm {d}E\right) \\ \lambda _i&= \frac{1}{\varDelta k_i} \int _{I_i(E)} \left( \frac{s_{-1}^{\mathrm {npo}}(E,E-\epsilon _p)}{\sqrt{2(E-\epsilon _p)}\sqrt{2E}} + \frac{s_{1}^{\mathrm {npo}}(E,E+\epsilon _p)}{\sqrt{2(E+\epsilon _p)}\sqrt{2E}}\right) \,\mathrm {d}E. \end{aligned} \end{aligned}$$

The kernel space of M given above is s-dimensional and given as (40) if M is reducible and can be permuted into a block-diagonal matrix with s irreducible diagonal blocks.

Lemma 7 tells us the relation between the grid in energy and the reducibility of the scattering matrix M defined by (41), which is also the Theorem 4 firstly proposed in our previous paper [8].

Lemma 7

For \(l > 1\), the following two items are equivalent:

  1. I:

    the scattering matrix M is reducible and can be permuted into a block-diagonal matrix with l diagonal blocks.

  2. II:

    \(\exists E^\star _1,\ldots , E^\star _l \in [0, \epsilon _p)\), \(E^\star _1< \cdots < E^\star _l\), such that

    $$\begin{aligned} \{ E^\star _i + \tau \epsilon _p : E^\star _i + \tau \epsilon _p \le E_{\max }, \tau \in {\mathbb {N}}\} \subseteq \{ E_{j - \frac{1}{2}} : j = 1, \ldots , N_E+1 \}, \end{aligned}$$
    (42)

    \(i=1,\ldots ,l\).

In some special situations, the scattering matrix is irreducible for sure, such as

  1. 1.

    The scattering matrix M is irreducible if

    $$\begin{aligned} \text {max}_{1 \le j\le N_E} \varDelta E_j \ge \epsilon _p. \end{aligned}$$
  2. 2.

    For an equally distributed grid in energy, i.e., the spacing of arbitrary two neighbouring grid points in energy is \(\varDelta E\), the scattering matrix M is irreducible if the ratio of \(\epsilon _p\) and \(\varDelta E\) is not an integer.

B Proof of Theorems and Lemmas in this paper

Proof of Theorem 1

Assume \(f_h^{\mathrm s}(E,\varvec{\alpha }) = \sum _{i=1}^{N_E} C_i 1_i(E)\) such that, \({\hat{S}}^{\mathrm s}[f_h^{\mathrm s}] = 0\). Then as long as \(C_i > 0\), \(\forall i = 1,\ldots ,N_E\), is proved, the theorem is then concluded. We substitute \(f_h^{\mathrm s}(E,\varvec{\alpha })\) in (22) with its above definition, then the equilibrium of (22) is obtained by solving the following linear equations:

$$\begin{aligned} G(\varvec{\alpha }) {\varvec{C}}= {\varvec{0}}, \quad \forall \varvec{\alpha }\in \varOmega , \end{aligned}$$
(43)

where

$$\begin{aligned} G(\varvec{\alpha }) = (g_{ij})_{N_E \times N_E}, ~ {\varvec{C}}= (C_1,C_2,\ldots ,C_{N_E})^T \end{aligned}$$

with

$$\begin{aligned} \begin{aligned} g_{ij}&= \int _{I_i(E-\epsilon _p)\cap I_j(E)}\,\mathrm {d}\mu ^{E}C(E+\epsilon _p) \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'} {\bar{s}}_{1}(E,\varvec{\alpha }';E+\epsilon _p,\varvec{\alpha }) \\&\quad + \int _{I_i(E+\epsilon _p)\cap I_j(E)}\,\mathrm {d}\mu ^{E}C(E-\epsilon _p) \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'} {\bar{s}}_{-1}(E,\varvec{\alpha }';E-\epsilon _p,\varvec{\alpha }) \\&\quad - \delta _{ij}\int _{\varOmega } \,\mathrm {d}\mu ^{\varvec{\alpha }'} \int _{I_i(E)}\,\mathrm {d}\mu ^{E}[C(E-\epsilon _p) {\bar{s}}_{-1}(E,\varvec{\alpha };E-\epsilon _p,\varvec{\alpha }') \\&\quad + C(E+\epsilon _p) {\bar{s}}_{1}(E,\varvec{\alpha };E+\epsilon _p,\varvec{\alpha }')]. \end{aligned} \end{aligned}$$
(44)

According to the rotational invariance of the semi-discretized scattering operator, one see \(G(\varvec{\alpha })\) does not depend on \(\varvec{\alpha }\), i.e.,

$$\begin{aligned} G(\varvec{\alpha }) = G, \quad \forall \varvec{\alpha }\in \varOmega , \end{aligned}$$

thus the nontrivial solution \({\varvec{C}}\) of (43), if exists, does not dependent on \(\varvec{\alpha }\), too.

To discuss the existence of nontrivial \({\varvec{C}}\) which satisfies (43), we make use of

$$\begin{aligned} {\bar{s}}_{\pm 1}(E_1,\varvec{\alpha }_1;E_2,\varvec{\alpha }_2) = {\bar{s}}_{\pm 1}(E_1,\varvec{\alpha }_2;E_2,\varvec{\alpha }_1) > 0, \quad \forall E_1,E_2\in [0,E_{\max }],~\varvec{\alpha }_1,\varvec{\alpha }_2\in \varOmega , \end{aligned}$$

and knows that G definitely satisfies all the conditions listed in Table 4, except the Irreducibility. There exists a permutation matrix P such that

$$\begin{aligned} \begin{array}{cc} {\mathbb {T}}_P(G) = \left[ \begin{array}{ccc} G_1 &{} &{} \\ &{} \ddots &{} \\ &{} &{} G_s \end{array}\right] , &{}\quad {\mathbb {V}}_P({\varvec{C}}) = \left[ \begin{array}{c}{\varvec{C}}_1\\ \vdots \\ {\varvec{C}}_s \end{array}\right] , \quad s\ge 1, \end{array} \end{aligned}$$
(45)

where the definitions of \({\mathbb {T}}_p\) and \({\mathbb {V}}_P\) are given in (39). Obviously, every \(G_i\) satisfies all the conditions listed in Table 4, thus there exists \({\varvec{C}}_i > 0\)( all the entries of \({\varvec{C}}\) are positive ) such that \(G_i {\varvec{C}}_i = {\varvec{0}}\), for \(i = 1,2,\ldots ,s\). \(\square \)

Proof of Theorem 2

Recalling (21) and (25), we multiply (22) with \(\varPsi _j(\alpha )\), \(j\in {\mathcal {J}}\), and calculate the Lebesgue integral of the resulted equation on \(\varOmega \) with measure \(\mu ^{\varvec{\alpha }}\), i.e.,

$$\begin{aligned}&V_i \dfrac{\,\mathrm {d}{f^{\mu _{\varvec{\alpha }}}_{ij}(t)}}{\,\mathrm {d}{t}} \nonumber \\&\quad = \left( \delta _{0j}\sum _{k}\frac{1}{V_k} \sum _{m}\delta _{0m}\left( V_k f^{\mu _{\varvec{\alpha }}}_{km}\right) \right) \left[ \int _{I_i(E-\epsilon _p)\cap I_k(E)}s_1^\mathrm{npo}(E,E+\epsilon _p) C(E+\epsilon _p)\,\mathrm {d}\mu ^E \right. \nonumber \\&\qquad \left. +\int _{I_i(E+\epsilon _p)\cap I_k(E)} s_{-1}^\mathrm{npo}(E,E-\epsilon _p)C(E-\epsilon _p)\,\mathrm {d}\mu ^E\right] \nonumber \\&\qquad - \left( \sum _{k}\frac{1}{V_i}\left( V_i f^{\mu _{\varvec{\alpha }}}_{ik}\right) \delta _{kj}\right) \int _{I_i(E)}\,\mathrm {d}\mu ^E [s_{-1}^\mathrm{npo}(E,E-\epsilon _p)C(E-\epsilon _p)\nonumber \\&\qquad + s_{1}^\mathrm{npo}(E,E+\epsilon _p)C(E+\epsilon _p)], \quad \text {for}~\, \forall i=1,\ldots ,N_E,~ j\in {\mathcal {J}}. \end{aligned}$$
(46)

Denoting by \(F_{ij} = V_i f^{\mu _{\varvec{\alpha }}}_{ij}\) and \({\varvec{F}}_i = [F_{1i},\ldots ,F_{N_Ei}]^T\), we rewrite (46) into a series of matrix form ODEs:

$$\begin{aligned} \begin{array}{ccc} \dfrac{\,\mathrm {d}{{\varvec{F}}_i}}{\,\mathrm {d}{t}} = A_i{\varvec{F}}_i,~ A_i\in {\mathbb {R}}^{N_E\times N_E}, \quad i\in {\mathcal {J}}, \end{array} \end{aligned}$$

where \(A_i\), \(i=1,2,\ldots \), except \(A_0\), are all diagonal matrices and negative definite. As a result,

$$\begin{aligned} F_{ji}(t) = F_{ji}(0)\exp \left( A_i(j,j) t\right) ,\quad \forall i>0,~ j=1,\ldots ,N_E, \end{aligned}$$
(47)

where \(A_i(j,j)\) is the \(j\hbox {th}\) diagonal entry of \(A_i\). (47) implies when t goes to infinity, \(F_{ji}(t)\) will decay to zero for all \(i>0\) and \(j=1,\ldots N_E\). In another word, if \(f^s_h(E,\varvec{\alpha }) \in \mathrm {Ker}({\hat{S}}^s)\), then

$$\begin{aligned} f^s_h(E,\varvec{\alpha }) = g(E) = \sum _{i=1}^{N_E}\left( \frac{F_{i0}\varPsi _0}{V_i}\right) 1_i(E), \quad \varPsi _0 = \frac{1}{\sqrt{4\pi }}, \end{aligned}$$
(48)

where \(F_{i0}\), \(i=1,\ldots ,N_E\) in (48) are determined by

$$\begin{aligned} \dfrac{\,\mathrm {d}{{\varvec{F}}_0}}{\,\mathrm {d}{t}} = A_0 {\varvec{F}}_0, \quad {\varvec{F}}_0 = \left( \begin{array}{c} F_{10}\\ \vdots \\ F_{N_E 0} \end{array}\right) . \end{aligned}$$
(49)

\(A_0\) in (49) is defined as

$$\begin{aligned} \begin{array}{ccc} A_0 = -\varLambda + S,&\varLambda = \mathrm {diag}\{ \lambda _1,\ldots ,\lambda _{N_E}\},&S = \{s_{ij}\}_{i,j=1,\ldots ,N_E}, \end{array} \end{aligned}$$
(50)

where

$$\begin{aligned} \begin{aligned} s_{ij}&= \frac{1}{V_j} \left[ \int _{I_{i}(E-\epsilon _p)\cap I_j(E)} s_1^{\mathrm {npo}}(E,E+\epsilon _p)C(E+\epsilon _p) \,\mathrm {d}\mu ^E \right. \\&\quad \left. + \int _{I_{i}(E+\epsilon _p)\cap I_j(E)} s_{-1}^{\mathrm {npo}}(E,E-\epsilon _p)C(E-\epsilon _p) \,\mathrm {d}\mu ^E\right] , \\ \lambda _i&= \frac{1}{V_i} \int _{I_i(E)} \,\mathrm {d}\mu ^E \left( s_{-1}^{\mathrm {npo}}(E,E-\epsilon _p)C(E-\epsilon _p) + s_{1}^{\mathrm {npo}}(E,E+\epsilon _p) C(E+\epsilon _p)\right) . \end{aligned} \end{aligned}$$

Clearly, \(A_0\) defined in (50) satisfies the last three conditions stated in Table 4, which allows us to choose an appropriate permutation matrix P and make transformations

$$\begin{aligned} {\mathbb {T}}_P( A_0 ) = \left[ \begin{array}{ccc}M_1 &{}&{} \\ {} &{}\ddots &{} \\ &{}&{} M_s\end{array}\right] ,\quad {\mathbb {V}}_P({\varvec{F}}_0) = \left[ \begin{array}{c} {{\varvec{g}}}_1\\ \vdots \\ {{\varvec{g}}}_s\end{array}\right] , \end{aligned}$$
(51)

according to (39). Obviously, every \(M_i\) satisfies all the conditions listed in Table 4, thus there exists unique \({{\varvec{g}}}_i > {\varvec{0}}\) such that \(\mathrm {Ker}(M_i) = \left\{ c_i {{\varvec{g}}}_i: c_i > 0\right\} \) according to (Q5) stated in Lemma 5. Consequently, \(\mathrm {Ker}(M)\) is nontrivial and defined as (40), which means \(F_{i0} > 0\), \(i=1,\ldots ,N_E\) in (48) are well defined. By denoting \(C_i = \left( \frac{F_{i0}\varPsi _0}{V_i}\right) \), one sees that \(\mathrm {Ker}({\hat{S}}^s) \in {\mathcal {L}}^{\mathrm {s}}\), and \(\mathrm {Ker}({\hat{S}}^s) = {\mathcal {L}}^{\mathrm {s}}\) is thus concluded by noticing \({\mathcal {L}}^{\mathrm {s}} \in \mathrm {Ker}({\hat{S}}^{\mathrm {s}})\) is obvious according to the definition of \({\mathcal {L}}^{\mathrm {s}}\). \(\square \)

Proof of Lemma 1

Obviously, \(\mathrm {Dim}( \mathrm {Ker}({\hat{S}}^s)) =\mathrm {Dim}(\mathrm {Ker}(A_0)) = s\) according to Lemma 6, where \(A_0\) is defined in (50). Comparing entries of \(A_0\) and M in (41), one notices that if the same grids in energy are used when constructing \(A_0\) and M, then

$$\begin{aligned} A_0(i,j) \ne 0 \Leftrightarrow M(i,j) \ne 0, \quad \forall 1\le i,j\le N_E. \end{aligned}$$

Therefore, Lemma 7 is also suitable for the system (49) if we treat \(A_0\) as the scattering matrix M as described in Lemma 7, which concludes the Lemma. \(\square \)

Proof of Lemma 2

Introducing nondecreasing functions \(\chi :{\mathbb {R}}\rightarrow {\mathbb {R}}\), we have

$$\begin{aligned}&\int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }}\sum _{i=1}^{N_E} \left( {\hat{S}}^{\mathrm {s}}\left[ f^{\mathrm s}_h(t,E,\varvec{\alpha }) \chi \left( \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha })}{g(E)}\right) \right] \right) _{i}\nonumber \\&\quad = \sum _{i=1}^{N_E} \int _{I_i(E)}\,\mathrm {d}\mu ^{E}C(E-\epsilon _p) \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'}\nonumber \\&[s^{\mathrm {s}}_{1}(E-\epsilon _p,\varvec{\alpha }'; E,\varvec{\alpha }) f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha }') -s^{\mathrm {s}}_{-1}(E,\varvec{\alpha };E-\epsilon _p,\varvec{\alpha }') f^{\mathrm s}_h(t,E,\varvec{\alpha })]\chi \left( \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha })}{g(E)}\right) \nonumber \\&\qquad + \sum _{i=1}^{N_E}\int _{I_i(E)}\,\mathrm {d}\mu ^{E} C(E+\epsilon _p) \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'} \nonumber \\&[s^{\mathrm {s}}_{-1}(E+\epsilon _p,\varvec{\alpha }';E,\varvec{\alpha }) f^{\mathrm s}_h(t,E+\epsilon _p,\varvec{\alpha }') -s^{\mathrm {s}}_{1}(E,\varvec{\alpha };E+\epsilon _p,\varvec{\alpha }') f^{\mathrm s}_h(t,E,\varvec{\alpha })]\chi \left( \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha })}{g(E)}\right) \nonumber \\&\quad = \sum _{i=1}^{N_E} \int _{I_i(E)}C(E-\epsilon _p)\,\mathrm {d}\mu ^{E} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'}\nonumber \\&[s^{\mathrm {s}}_{1}(E-\epsilon _p,\varvec{\alpha }'; E,\varvec{\alpha }) f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha }') -s^{\mathrm {s}}_{-1}(E,\varvec{\alpha };E-\epsilon _p,\varvec{\alpha }') f^{\mathrm s}_h(t,E,\varvec{\alpha })]\chi \left( \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha })}{g(E)}\right) \nonumber \\&\qquad + \sum _{i=1}^{N_E}\int _{I_i(E+\epsilon _p)}C(E-\epsilon _p)\,\mathrm {d}\mu ^{E} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'}\nonumber \\&[s^{\mathrm {s}}_{-1}(E,\varvec{\alpha }';E-\epsilon _p,\varvec{\alpha }) f^{\mathrm s}_h(t,E,\varvec{\alpha }') -s^{\mathrm {s}}_{1}(E-\epsilon _p,\varvec{\alpha };E,\varvec{\alpha }') f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })]\chi \left( \frac{f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })}{g(E-\epsilon _p)}\right) \end{aligned}$$
(52)

[Exchange \(\varvec{\alpha }\) and \(\varvec{\alpha }'\) in the first summation above]

$$\begin{aligned}&= \sum _{i=1}^{N_E} \int _{I_i(E)}C(E-\epsilon _p)\,\mathrm {d}\mu ^{E} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'}\\&\quad [s^{\mathrm {s}}_{1}(E-\epsilon _p,\varvec{\alpha };E,\varvec{\alpha }') f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha }) -s^{\mathrm {s}}_{-1}(E,\varvec{\alpha }';E-\epsilon _p,\varvec{\alpha }) f^{\mathrm s}_h(t,E,\varvec{\alpha }')]\chi \left( \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha }')}{g(E)}\right) \end{aligned}$$

[In the second summation above, note that when \(E\in [0,\epsilon _p] \cup [E_{\mathrm {max}},E_{\mathrm {max}}+\epsilon _p]\), \(s_{-1}(E,\varvec{\alpha }';E-\epsilon _p,\varvec{\alpha }) =s_{1}(E-\epsilon _p,\varvec{\alpha };E,\varvec{\alpha }') =0 \)]

$$\begin{aligned}&+ \sum _{i=1}^{N_E}\int _{I_i(E)}C(E-\epsilon _p)\,\mathrm {d}\mu ^{E} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'}\\&\quad [s^{\mathrm {s}}_{-1}(E,\varvec{\alpha }';E-\epsilon _p,\varvec{\alpha }) f^{\mathrm s}_h(t,E,\varvec{\alpha }') -s^{\mathrm {s}}_{1}(E-\epsilon _p,\varvec{\alpha };E,\varvec{\alpha }') f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })]\chi \left( \frac{f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })}{g(E-\epsilon _p)}\right) . \end{aligned}$$

Using (27), we transform the above integration into

$$\begin{aligned}&\int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }}\sum _{i=1}^{N_E} \left( {\hat{S}}^{\mathrm {s}}\left[ f^{\mathrm s}_h(t,E,\varvec{\alpha }) \chi \left( \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha })}{g(E)}\right) \right] \right) _{i}\nonumber \\&\quad = -\sum _{i=1}^{N_E}\int _{I_i(E)}C(E-\epsilon _p)\,\mathrm {d}\mu ^{E} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{\varOmega }\,\mathrm {d}\mu ^{\varvec{\alpha }'} s^{\mathrm {s}}_{-1}(E,\varvec{\alpha }';E-\epsilon _p,\varvec{\alpha })g(E)\nonumber \\&\left[ \frac{f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })}{g(E-\epsilon _p)} - \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha }')}{g(E)}\right] \left[ \chi \left( \frac{f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })}{g(E-\epsilon _p)}\right) -\chi \left( \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha }')}{g(E)}\right) \right] \le 0, \end{aligned}$$
(53)

because \(\chi \) is nondecreasing and the other part of the integrand is nonnegative. We let \(\chi (x) = x\) in (53) and the resulted inequality becomes equality if and only if

$$\begin{aligned} \left[ \frac{f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })}{g(E-\epsilon _p)} - \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha }')}{g(E)}\right] ^2 = 0, \quad \text {for almost all} ~E,\varvec{\alpha },\varvec{\alpha }', \end{aligned}$$

thus

$$\begin{aligned} \frac{f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })}{g(E-\epsilon _p)}= \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha }')}{g(E)} \end{aligned}$$

holds almost everywhere. Based on the above discussion, we infer that there exists \(\lambda > 0\) such that

$$\begin{aligned} \frac{f^{\mathrm s}_h(t,E-\epsilon _p,\varvec{\alpha })}{g(E-\epsilon _p)} = \frac{f^{\mathrm s}_h(t,E,\varvec{\alpha }')}{g(E)} = \lambda , \quad \text {for almost all} ~E,\varvec{\alpha },\varvec{\alpha }'. \end{aligned}$$

It is then concluded that

$$\begin{aligned} f^{\mathrm s}_h(t,E,\varvec{\alpha }) = \lambda g(E), \quad \text {for almost all } E \text { and } \varvec{\alpha }\end{aligned}$$

which proves the Lemma. \(\square \)

Proof of Theorem 3

We need to prove there exist \(D_{k} > 0\), \(k=1,\ldots ,m_i\), such that \(M^{\mathrm {f}}_i {{\varvec{g}}}^{\mathrm {f}}_i = {\varvec{0}}\). Clearly, with the definition of \({{\varvec{g}}}_i^{\mathrm {f}}\) in (36), to solve \(M_i^{\mathrm {f}}{{\varvec{g}}}_i^{\mathrm {f}} = {\varvec{0}}\) is equivalent to solve

$$\begin{aligned} H_i {\varvec{D}}_i = {\varvec{0}}, \quad {\varvec{D}}_i = \left[ \begin{array}{c} D_{i_1} \\ \vdots \\ D_{m_i} \end{array}\right] , \end{aligned}$$
(54)

in which

$$\begin{aligned} H_i = \lambda \varLambda L {\bar{H}}_i, \end{aligned}$$
(55)

where \(\lambda = \int _{\varOmega } \,\mathrm {d}\mu ^{\varvec{\alpha }}\) and

$$\begin{aligned} \quad L = I_{m_i\times m_i}\otimes \left[ 1 , \ldots , 1 \right] _{1\times N_{\varvec{\alpha }}}^T,\quad \varLambda = I_{m_i\times m_i}\otimes \mathrm {diag}\left\{ \int _{S_1} \,\mathrm {d}\mu ^{\varvec{\alpha }},\ldots , \int _{S_{N_{\varvec{\alpha }}}} \,\mathrm {d}\mu ^{\varvec{\alpha }}\right\} , \end{aligned}$$

where \(\otimes \) is the Kronecker product.

\({\bar{H}}_i\) in (55) is a \(n_i\hbox {th}\) order square matrix, and the \((a,b)\hbox {th}\) entry of \({\bar{H}}_i\) reads

$$\begin{aligned} {\bar{H}}_{i,ab}&= \int _{I_{\sigma _i^E(a)}(E-\epsilon _p)\cap I_{\sigma _i^E(b)}(E)}\,\mathrm {d}\mu ^{E}C(E+\epsilon _p) s_1^{\mathrm {npo}}(E,E+\epsilon _p) \\&\quad + \int _{I_{\sigma _i^E(a)}(E+\epsilon _p)\cap I_{\sigma _i^E(b)}(E)}\,\mathrm {d}\mu ^{E} C(E-\epsilon _p) s_{-1}^{\mathrm {npo}}(E,E-\epsilon _p) \\&\quad - \delta _{ab} \int _{I_{\sigma _i^E(a)}(E)}\,\mathrm {d}\mu ^{E} [s_{-1}^{\mathrm {npo}}(E,E-\epsilon _p)C(E-\epsilon _p) +s_{1}^{\mathrm {npo}}(E,E+\epsilon _p)C(E+\epsilon _p)]. \end{aligned}$$

Lemma 4 and a few calculations verify that \({\bar{H}}_i\) satisfies all the conditions listed in Table 4, thus \(\mathrm {rank}({\bar{H}}_i) = n_i - 1\) and the existence of unique positive \((D_1,\ldots ,D_{m_i})^T \in \mathrm {Ker}({\bar{H}}_i)\) are obtained according to Lemma 5. Since \(\varLambda \), L are both full column-rank matrices and

$$\begin{aligned} \mathrm {rank}(\varLambda ) + \mathrm {rank}(L) + \mathrm {rank}({\bar{H}}_i) -\mathrm {cl}(\varLambda ) - \mathrm {cl}(L) \le \mathrm {rank}(H_i) \le \mathrm {min}\{\mathrm {rank}(\varLambda ), \mathrm {rank}(L),\mathrm {rank}({\bar{H}}_i)\}, \end{aligned}$$

is set up, where \(\mathrm {cl}(A)\) is the number of columns of matrix A, we obtain

$$\begin{aligned} \mathrm {rank}(H_i) = \mathrm {rank}({\bar{H}}_i) = m_i-1. \end{aligned}$$
(56)

It is then concluded from (56), (54) and (55) that

$$\begin{aligned} \mathrm {Ker}(H_i) = \mathrm {Ker}({\bar{H}}_i), \end{aligned}$$
(57)

and the theorem is established by recalling our former discussions about \({\bar{H}}_i\). \(\square \)

Proof of Theorem 4

Since \(M^{\mathrm {f}}\) is irreducible and recalling Lemma 4, we could immediately obtain that the equilibrium \({{\varvec{g}}}^{\mathrm {f}}\) of (28) is unique up to multiplication by a constant, thus, the exsistance and uniqueness of \(f^{\mathrm {eq}}_h(E,\varvec{\alpha })\) as the equilibrium of (23) is thus obtained.

Furthermore, since Platonic solids and regular pyramids are highly symmetrical, by using conditions (C1), (C2), and (13), we know each block of \(M^{\mathrm {f}}\), saying \(M^{\mathrm {f},jk}\), \(1\le j,k\le N_E\), is a circulant matrix. In addition, the \((l,n)\hbox {th}\) entry of \(M^{\mathrm {f},jk}\) reads

$$\begin{aligned}\begin{aligned} M^{\mathrm {f},jk}_{ln}&= \frac{1}{V_{kn}}\int _{I_j(E+\epsilon _p)\cap I_k(E)}\,\mathrm {d}\mu ^E\int _{S_l} \,\mathrm {d}\mu ^{\varvec{\alpha }}\int _{S_n} \,\mathrm {d}\mu ^{\varvec{\alpha }'} s_{-1}(E,\varvec{\alpha }'; E-\epsilon _p,\varvec{\alpha }) C(E-\epsilon _p) \\&= \frac{V_{jl}}{V_{kn}}\frac{1}{V_{jl}} \exp \left( \frac{\epsilon _p}{k_B T_L}\right) \int _{I_j(E)\cap I_k(E-\epsilon _p)}\,\mathrm {d}\mu ^E\int _{S_l} \,\mathrm {d}\mu ^{\varvec{\alpha }}\int _{S_n}\,\mathrm {d}\mu ^{\varvec{\alpha }'} s_{1}(E,\varvec{\alpha }'; E+\epsilon _p,\varvec{\alpha })C(E+\epsilon _p) \\&= \left( \exp \left( \frac{\epsilon _p}{k_B T_L}\right) \right) \frac{V_{jl}}{V_{kn}} M^{\mathrm {f,kj}}_{nl}, \quad \forall j < k. \end{aligned} \end{aligned}$$

Due to (C1) and (C2), \(V_{jl}\) is constant with respect to l, saying

$$\begin{aligned} V_{jl} = D(j), \quad \forall ~ 1 \le j \le N_E, 1\le l\le N_{\varvec{\alpha }}, \end{aligned}$$

thus

$$\begin{aligned} M^{\mathrm {f},jk} = \exp \left( \frac{\epsilon _p}{k_BT_L}\right) \frac{D(j)}{D(k)} \left( M^{\mathrm {f},kj}\right) ^T, \quad \forall j < k. \end{aligned}$$
(58)

In all, by recalling \(M^{\mathrm {f},jk}\) is circulant, \(\forall 1\le j,k\le N_E\), the Zero row sum property of \(M^{\mathrm {f}}\) as given in Table 4, and (58), one then concludes that there exists \((C_1,\ldots ,C_{N_E})^T\), where \(C_i>0\), \(i=1,\ldots ,N_E\), such that \(f^{\mathrm {eq}}_h(E,\varvec{\alpha })\) has the form of (37). \(\square \)

C Properties of \(M^{\mathrm {f}}\)

By denoting

$$\begin{aligned}&s_{\tau _i(j),\tau _{i'}(j')}= \frac{1}{V_{i'j'}}\left[ \int _{I_i(E-\epsilon _p)\cap I_{i'}(E)}C(E+\epsilon _p)\,\mathrm {d}\mu ^E \int _{S_{j}}\,\mathrm {d}\mu ^{\varvec{\alpha }}\int _{S_{j'}} \,\mathrm {d}\mu ^{\varvec{\alpha }'} {\bar{s}}_1(E,\varvec{\alpha }';E+\epsilon _p,\varvec{\alpha }) \right. \nonumber \\&\quad \left. + \int _{I_i(E+\epsilon _p)\cap I_{i'}(E)}C(E-\epsilon _p)\,\mathrm {d}\mu ^E \int _{S_{j}}\,\mathrm {d}\mu ^{\varvec{\alpha }}\int _{S_{j'}} \,\mathrm {d}\mu ^{\varvec{\alpha }'} {\bar{s}}_{-1}(E,\varvec{\alpha }';E-\epsilon _p,\varvec{\alpha })\right] , \end{aligned}$$
(59)

and

$$\begin{aligned}&\lambda _{\tau _i(j),\tau _{i'}(j')} = \frac{\delta _{ii'}\delta _{jj'}}{V_{i'j'}} \int _{I_i(E)}\,\mathrm {d}\mu ^E\int _{S_{j}} \,\mathrm {d}\mu ^{\varvec{\alpha }}\int _{\varOmega } \,\mathrm {d}\mu ^{\varvec{\alpha }'} [{\bar{s}}_{-1}(E,\varvec{\alpha }; E-\epsilon _p,\varvec{\alpha }')C(E-\epsilon _p) \nonumber \\&\quad +\, {\bar{s}}_1(E,\varvec{\alpha }; E+\epsilon _p,\varvec{\alpha }')C(E+\epsilon _p)], \end{aligned}$$
(60)

we rewrite \(M^{\mathrm {f}}_{\tau _i(j),\tau _{i'}(j)}\) in (29) as

$$\begin{aligned} M^{\mathrm {f}}_{\tau _i(j),\tau _{i'}(j)} = s_{\tau _i(j),\tau _{i'}(j)} - \delta _{ii'}\delta _{jj'} \lambda _{\tau _i(j),\tau _i(j)}. \end{aligned}$$
(61)

Noticing the definition of \({\bar{s}}_v(E,\varvec{\alpha };E',\varvec{\alpha }')\) given in (19) and (20), one sees

$$\begin{aligned} {\bar{s}}_v(E,\varvec{\alpha };E',\varvec{\alpha }') = {\bar{s}}_v(E,\varvec{\alpha }';E',\varvec{\alpha }), \quad \forall \varvec{\alpha },\varvec{\alpha }' \in \varOmega . \end{aligned}$$
(62)

Exchanging \(\varvec{\alpha }\) and \(\varvec{\alpha }'\) in the integrals of (59) and taking summation of all the entries of \(M^{\mathrm {f}}\) in arbitrary column, we obtain

$$\begin{aligned} \sum _{ij} M^{\mathrm {f}}_{\tau _i(j),\tau _{i'}(j')} =\sum _{ij} s_{\tau _i(j),\tau _{i'}(j')} - \lambda _{\tau _{i'}(j'),\tau _{i'}(j')} = 0, \quad \forall 1 \le i'\le N_E, 1\le j'\in N_{\varvec{\alpha }}. \end{aligned}$$
(63)

Since \({\bar{s}}_v(E,\varvec{\alpha };E',\varvec{\alpha }') > 0\) in (59) and (60),

$$\begin{aligned} \begin{array}{cc} s_{\tau _i(j),\tau _{i'}(j')}\ge 0,&\lambda _{\tau _i(j),\tau _i(j)} > 0, \quad \forall 1\le i,i'\le N_E, 1\le j\le N_{\varvec{\alpha }}, 1\le j'\le N_{\varvec{\alpha }}, \end{array} \end{aligned}$$
(64)

is obvious. Considering (61), (63) and (64) together, we obtain that

$$\begin{aligned} M^{\mathrm {f}}_{\tau _i(j),\tau _{i'}(j')} \left\{ \begin{array}{ll} < 0, &{} \quad \text {if} \,\,i = i', j=j',\\ \ge 0, &{} \quad \text {otherwise}. \end{array}\right. \end{aligned}$$
(65)

Furthermore, one sees for arbitrary \(1 \le i,i'\le N_E\) that

$$\begin{aligned} \exists 1\le j_0,j_0'\le N_{\varvec{\alpha }}, \quad s.t.\quad M^{\mathrm {f}}_{\tau _i(j_0),\tau _{i'}(j_0')} \ne 0 \Rightarrow \quad M^{\mathrm {f}}_{\tau _i(j),\tau _{i'}(j')} \ne 0, \quad \forall 1\le j,j'\le N_{\varvec{\alpha }}. \end{aligned}$$
(66)

According to (9) and (27), we have that

$$\begin{aligned}&V_{i'j'}s_{\tau _i(j),\tau _{i'}(j')} =\int _{I_i(E-\epsilon _p)\cap I_{i'}(E)}\,\mathrm {d}\mu ^E \int _{S_{j}} \,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{S_{j'}} \,\mathrm {d}\mu ^{\varvec{\alpha }'}{\bar{s}}_1(E,\varvec{\alpha }'; E+\epsilon _p,\varvec{\alpha }) C(E+\epsilon _p) \nonumber \\&\qquad + \int _{I_i(E+\epsilon _p)\cap I_{i'}(E)}\,\mathrm {d}\mu ^E \int _{S_{j}}\,\mathrm {d}\mu ^{\varvec{\alpha }} \int _{S_{j'}} \,\mathrm {d}\mu ^{\varvec{\alpha }'}{\bar{s}}_{-1}(E,\varvec{\alpha }'; E-\epsilon _p,\varvec{\alpha })C(E-\epsilon _p) \end{aligned}$$
(67)
$$\begin{aligned}&\quad = \exp \left( -\frac{\epsilon _p}{k_BT}\right) \int _{I_{i'}(E+\epsilon _p)\cap I_i(E)}\,\mathrm {d}\mu ^E \int _{S_{j}}\,\mathrm {d}\mu ^{\varvec{\alpha }}\int _{S_{j'}} \,\mathrm {d}\mu ^{\varvec{\alpha }'}{\bar{s}}_{-1}(E,\varvec{\alpha }'; E-\epsilon _p,\varvec{\alpha }) C(E-\epsilon _p) \nonumber \\&\qquad + \exp \left( \frac{\epsilon _p}{k_BT}\right) \int _{I_{i'}(E-\epsilon _p) \cap I_i(E)}\,\mathrm {d}\mu ^E \int _{S_{j}}\,\mathrm {d}\mu ^{\varvec{\alpha }}\int _{S_{j'}} \,\mathrm {d}\mu ^{\varvec{\alpha }'}{\bar{s}}_{1}(E,\varvec{\alpha }'; E+\epsilon _p,\varvec{\alpha }) C(E+\epsilon _p) \nonumber \\&\quad \in [C_\star ,C^\star ]\left( V_{ij}s_{\tau _{i'}(j'),\tau _i(j)}\right) , \end{aligned}$$
(68)

where

$$\begin{aligned}\begin{array}{cc} C_\star = \min \{\exp \left( -\frac{\epsilon _p}{k_BT}\right) , \exp \left( \frac{\epsilon _p}{k_BT}\right) \}> 0,&C^\star = \max \{\exp \left( -\frac{\epsilon _p}{k_BT}\right) , \exp \left( \frac{\epsilon _p}{k_BT}\right) \} > 0, \end{array}\end{aligned}$$

thus

$$\begin{aligned} M^{\mathrm {f}}_{\tau _i(j),\tau _{i'}(j')}> 0\Leftrightarrow M^{\mathrm {f}}_{\tau _{i'}(j'),\tau _i(j)} > 0,\quad \forall 1 \le i,i'\le N_E, 1\le j,j'\le N_{\varvec{\alpha }}. \end{aligned}$$
(69)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Lu, T. Discrete Kernel Preserving Model for 3D Electron–Optical Phonon Scattering Under Arbitrary Band Structures. J Sci Comput 81, 2213–2236 (2019). https://doi.org/10.1007/s10915-019-01082-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01082-2

Keywords

Mathematics Subject Classification

Navigation