Skip to main content
Log in

Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the design and analysis of a class of second order accurate IMEX finite volume schemes for the compressible Euler equations in the zero Mach number limit is presented. In order to account for the fast and slow waves, the nonlinear fluxes in the Euler equations are split into stiff and non-stiff components, respectively. The time discretisation is performed by an IMEX Runge–Kutta method, therein the stiff terms are treated implicitly and the non-stiff terms explicitly. In the space discretisation, a Rusanov-type central flux is used for the non-stiff part, and simple central differencing for the stiff part. Both the time semi-discrete and space-time fully-discrete schemes are shown to be asymptotic preserving. The numerical experiments confirm that the schemes achieve uniform second order convergence with respect to the Mach number. A notion of accuracy at low Mach numbers, termed as the asymptotic accuracy, is introduced in terms of the invariance of a well-prepared space of constant densities and divergence-free velocities. The asymptotic accuracy is concerned with the closeness of the compressible solution with that of its incompressible counterpart in a low Mach number regime. It is shown theoretically as well as numerically that the proposed schemes are asymptotically accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arun, K.R., Das Gupta, A.J., Samantaray, S.: An implicit–explicit scheme accurate at low Mach numbers for the wave equation system. In: Theory, Numerics and Applications of Hyperbolic Problems. I, vol. 236, Springer Proceedings in Mathematics & Statistics, pp. 97–109. Springer, Cham (2018)

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997). Special issue on time integration (Amsterdam, 1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audusse, E., Do, M.H., Omnes, P., Penel, Y.: Analysis of modified Godunov type schemes for the two-dimensional linear wave equation with Coriolis source term on cartesian meshes. J. Comput. Phys. 373, 91–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benacchio, T., O’Neill, W.P., Klein, R.: A blended soundproof-to-compressible numerical model for small-to-mesoscale atmospheric dynamics. Mon. Weather Rev. 142(12), 4416–4438 (2014)

    Article  Google Scholar 

  5. Bijl, H., Wesseling, P.: A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141(2), 153–173 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bispen, G., Arun, K.R., Lukáčová-Medvid’ová, M., Noelle, S.: IMEX large time step finite volume methods for low Froude number shallow water flows. Commun. Comput. Phys. 16(2), 307–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bispen, G., Lukáčová-Medviďová, M., Yelash, L.: Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation. J. Comput. Phys. 335, 222–248 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45(4), 1600–1621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boscarino, S., Qiu, J.-M., Russo, G., Xiong, T.: A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system. J. Comput. Phys. 392, 594–618 (2019)

    Article  MathSciNet  Google Scholar 

  10. Boscarino, S., Russo, G., Scandurra, L.: All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics. J. Sci. Comput. 77(2), 850–884 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 231(17), 5685–5704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Degond, P.: Asymptotic-preserving schemes for fluid models of plasmas. In: Numerical Models for Fusion, vol. 39/40 of Panor. Synthèses, pp. 1–90. Soc. Math. France, Paris (2013)

  13. Degond, P., Tang, M.: All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10(1), 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dellacherie, S.: Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229(4), 978–1016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dellacherie, S., Omnes, P., Rieper, F.: The influence of cell geometry on the Godunov scheme applied to the linear wave equation. J. Comput. Phys. 229(14), 5315–5338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dimarco, G., Loubère, R., Michel-Dansac, V., Vignal, M.-H.: Second-order implicit–explicit total variation diminishing schemes for the Euler system in the low Mach regime. J. Comput. Phys. 372, 178–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dimarco, G., Loubère, R., Vignal, M.-H.: Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit. SIAM J. Sci. Comput. 39(5), A2099–A2128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feistauer, M., Kučera, V.: On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224(1), 208–221 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guillard, H., Viozat, C.: On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28(1), 63–86 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haack, J., Jin, S., Liu, J.-G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12, 955–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996). Stiff and differential-algebraic problems

    Book  MATH  Google Scholar 

  22. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Math. Univ. Parma (N.S.) 3(2), 177–216 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44(1), 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Klainerman, S., Majda, A.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35(5), 629–651 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121(2), 213–237 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klein, R., Botta, N., Schneider, T., Munz, C.D., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39(1–4), 261–343 (2001). Special issue on practical asymptotics

    Article  MathSciNet  MATH  Google Scholar 

  29. Meister, A.: Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60(1), 256–271 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  30. Munz, C.-D., Roller, S., Klein, R., Geratz, K.J.: The extension of incompressible flow solvers to the weakly compressible regime. Comput Fluids 32(2), 173–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Noelle, S., Bispen, G., Arun, K.R., Lukáčová-Medviďová, M., Munz, C.-D.: A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36(6), B989–B1024 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. In: Recent Trends in Numerical Analysis, volume 3 of Adv. Theory Comput. Math., pp. 269–288. Nova Sci. Publ., Huntington, NY (2001)

  33. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1–2), 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Schneider, T., Botta, N., Geratz, K.J., Klein, R.: Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows. J. Comput. Phys. 155(2), 248–286 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114(2), 476–512 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Smolarkiewicz, P.K., Kühnlein, C., Wedi, N.P.: A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics. J. Comput. Phys. 263, 185–205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang, M.: Second order all speed method for the isentropic Euler equations. Kinet. Relat. Models 5(1), 155–184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zakerzadeh, H., Noelle, S.: A note on the stability of implicit–explicit flux-splittings for stiff systems of hyperbolic conservation laws. Commun. Math. Sci. 16(1), 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees whose comments have lead to a significant improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Arun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

First, let us introduce the following shorthands (see Fig. 7 for RK coefficients).

$$\begin{aligned} b^{(2)}_1&= {\tilde{\omega }}_2 {\tilde{c}}_{2} - \frac{1}{2}, \quad b^{(2)}_2= {\tilde{\omega }}_1 c_{1} + {\tilde{\omega }}_2 c_{2} + \omega _2 {\tilde{c}}_{2} - 1, \quad b^{(2)}_3=\omega _1c_{1}+\omega _{2} c_{2}-\frac{1}{2}, \nonumber \\ b^{(3)}_1&= \frac{1}{2} - \left\{ {\tilde{\omega }}_2 {\tilde{c}}_{2} \sum _{i=1}^{2}a_{i,i} + {\tilde{\omega }}_3 \sum _{j=1}^{3} ( {\tilde{a}}_{3,j} c_{j} + a_{3,j} {\tilde{c}}_{j}) + \omega _3 {\tilde{c}}_{2} {\tilde{a}}_{3,2} \right\} , \nonumber \\ b^{(3)}_2&= \frac{1}{6} - {\tilde{\omega }}_3 {\tilde{c}}_{2} {\tilde{a}}_{3,2} \nonumber \\ b^{(3)}_3&= \frac{1}{2} - \left\{ \sum _{i = 1}^{3 }{\tilde{\omega }}_i\sum _{j = 1}^{i } a_{i,j} c_{j} + \omega _2 {\tilde{c}}_{2}\sum _{i=1}^{2}a_{i,i}+ \omega _3\sum _{j = 1}^{3} ( {\tilde{a}}_{3,j} c_{j} + a_{3,j} {\tilde{c}}_{j}) \right\} , \nonumber \\ b^{(3)}_4&= \frac{1}{6} - \sum _{i,j=1}^{3} \omega _i a_{i,j} c_{j} \nonumber \\ b^{(4)}_1&= {\tilde{\omega }}_2 {\tilde{c}}_{2}\left( a_{1,1}\sum _{i=1}^2a_{i,i} + a_{2,2}^2\right) +{\tilde{\omega }}_3 \left( \sum _{j= 1}^2 {\tilde{a}}_{3,i} \sum _{i=1}^j c_{i} a_{j,i}+ a_{3,2} {\tilde{c}}_{2} \sum _{i=1}^2a_{i,i} \right. \nonumber \\&\quad \left. + a_{3,3} \sum _{i=1}^2 {\tilde{a}}_{3,i} c_{i} + \sum _{j=2}^3 a_{3,j} {\tilde{c}}_{j}\right) \nonumber \\&\quad + \omega _{3} {\tilde{a}}_{3,2} {\tilde{c}}_{2} \sum _{i=1}^3 a_{i,i} - \frac{1}{4} , \quad b^{(4)}_2 = {\tilde{\omega }}_{3} {\tilde{a}}_{3,2}{\tilde{a}}_{2,1} \sum _{i=1}^{3}a_{i,i} - \frac{1}{6} \nonumber \\ b^{(4)}_3&= \sum _{k=1}^3 {\tilde{\omega }}_{k} \sum _{j = 1}^k a_{k,j} \sum _{i = 1}^j a_{j,i} c_{i} + \sum _{k=2}^3\omega _{k} \sum _{j=1}^{k-1} {\tilde{a}}_{k,j} \sum _{i=1}^j a_{j,i} c_i + \sum _{k=2}^3 \omega _k {\tilde{a}}_{2,1} a_{k,2} \sum _{i=1}^2a_{i,i} \nonumber \\&+ \omega _{3} a_{3,3} \sum _{j=1}^2 ({\tilde{a}}_{3,j} c_j + a_{3,j+1} {\tilde{c}}_{j+1}) - \frac{1}{6}, \quad b^{(4)}_4= \sum _{k = 1}^3\omega _{k} \sum _{j=1}^k a_{k,j} \sum _{i = 1}^j a_{j,i} c_i - \frac{1}{24} \nonumber \\ \end{aligned}$$
(8.1)
Fig. 7
figure 7

Double Butcher tableaux of IMEX-RK schemes. Top left: Euler (1,1,1), top middle: JIN(2,2,2), top right: PR(2,2,2), where \(\delta _p=1-(1/2\gamma _p)\), bottom left: ARS(2,2,2), where \(\gamma _a=1-(\sqrt{2}/2), \ \delta _a=1-(1/2\gamma _a)\), and bottom right: CN(2,2,2)

With the above notations, the entries in the matrices \(\mathcal {B}^{(2)},B^{(3)}\) and \(B^{(4)}\) read

$$\begin{aligned} \mathcal {B}_{1,1}^{(2)}&=\Delta t\left\{ b^{(2)}_1 ({{\underline{{\varvec{u}}}}} \cdot \nabla )^2+b^{(2)}_3\frac{{{\underline{a}}}^2}{\varepsilon ^2} \Delta \right\} +\frac{1}{2}\Delta x_k|{{{\underline{u}}}}_k|\partial _{x_k}^2, \quad \mathcal {B}_{1,2}^{(2)}=\Delta t{{\underline{\rho }}}b^{(2)}_2({{\underline{{\varvec{u}}}}}\cdot \nabla ) \nabla \cdot , \\ \mathcal {B}_{2,1}^{(2)}&=\Delta t\frac{{{\underline{a}}}^2}{{{\underline{\rho }}}\varepsilon ^2}b^{(2)}_2({{\underline{{\varvec{u}}}}} \cdot \nabla ) \nabla , \quad \mathcal {B}_{2,2}^{(2)}=\Delta t\left\{ b^{(2)}_1({{\underline{{\varvec{u}}}}} \cdot \nabla )^2+ b^{(2)}_3\frac{{{\underline{a}}}^2}{\varepsilon ^2}\nabla (\nabla \cdot ) \right\} +\frac{1}{2}\Delta x_k|{{{\underline{u}}}}_k|\partial _{x_k}^2\mathbb {I}_2. \\ B^{(3)}_{1,1}&=b^{(3)}_2 ({{\underline{{\varvec{u}}}}} \cdot \nabla )^3 + b^{(3)}_3\frac{{{\underline{a}}}^2}{\varepsilon ^2}({{\underline{{\varvec{u}}}}} \cdot \nabla ) \Delta , \quad B^{(3)}_{1,2}=b^{(3)}_1 {\underline{\rho }}({{\underline{{\varvec{u}}}}} \cdot \nabla )^2 \nabla \cdot + b^{(3)}_4 \frac{{{\underline{a}}}^2 {{\underline{\rho }}}}{\varepsilon ^2} \Delta \nabla \cdot , \\ B^{(3)}_{2,1}&=b^{(3)}_1 \frac{{{\underline{a}}}^2}{\varepsilon ^2} ({{\underline{{\varvec{u}}}}} \cdot \nabla )^2 \nabla + b^{(3)}_4 \frac{{{\underline{a}}}^4 }{{{\underline{\rho }}}\varepsilon ^4} \Delta \nabla , \quad B^{(3)}_{2,2}=b^{(3)}_2({{\underline{{\varvec{u}}}}} \cdot \nabla )^3 \mathbb {I}_2+b^{(3)}_3 \frac{{{\underline{a}}}^2}{\varepsilon ^2}({{\underline{{\varvec{u}}}}} \cdot \nabla ) \nabla \nabla \cdot . \\ B^{(4)}_{1,1}&= b^{(4)}_1 \frac{{{\underline{a}}}^2}{\varepsilon ^2}({{\underline{{\varvec{u}}}}} \cdot \nabla )^2 \Delta + b^{(4)}_4\frac{{{\underline{a}}}^4}{\varepsilon ^4} \Delta ^2 - \frac{1}{24} ({{\underline{{\varvec{u}}}}} \cdot \nabla )^4, \quad B^{(4)}_{1,2}=b^{(4)}_2{{\underline{\rho }}} ({{\underline{{\varvec{u}}}}} \cdot \nabla )^3 \nabla \cdot \\&\quad +b^{(4)}_3 \frac{{{\underline{a}}}^2 {{\underline{\rho }}}}{\varepsilon ^2} ({{\underline{{\varvec{u}}}}} \cdot \nabla )\Delta \nabla \cdot , \\ B^{(4)}_{2,1}&= b^{(4)}_2 \frac{{{\underline{a}}}^2}{{{\underline{\rho }}} \varepsilon ^2}({{\underline{{\varvec{u}}}}} \cdot \nabla )^3 \nabla + b^{(4)}_3\frac{{{\underline{a}}}^4 }{{{\underline{\rho }}}\varepsilon ^4}({{\underline{{\varvec{u}}}}} \cdot \nabla )\Delta \nabla , \ B^{(4)}_{2,2}=b^{(4)}_1 \frac{{{\underline{a}}}^2}{\varepsilon ^2}({{\underline{{\varvec{u}}}}} \cdot \nabla )^2 \nabla (\nabla \cdot )\\&\quad + b^{(4)}_4\frac{{{\underline{a}}}^4}{\varepsilon ^4} \nabla \Delta \nabla \cdot - \frac{1}{24} ({{\underline{{\varvec{u}}}}} \cdot \nabla )^4 \mathbb {I}_2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, K.R., Samantaray, S. Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations. J Sci Comput 82, 35 (2020). https://doi.org/10.1007/s10915-020-01138-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01138-8

Keywords

Mathematics Subject Classification

Navigation