Skip to main content
Log in

Analysis of Second Order Time Filtered Backward Euler Method for MHD Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The present work is devoted to introduce the backward Euler based modular time filter method for MHD flow. The proposed method improves the accuracy of the solution without a significant change in the complexity of the system. Since time filters for fluid variables are added as separate post processing steps, the method can be easily incorporated into an existing backward Euler code. We show that the time filtered backward Euler method delivers better correct energy and cross-helicity balance in comparison with the backward Euler method. Long-time stability, stability and second order convergence of the method are also proven. The influences of introduced time filter method on several numerical experiments are given, which both verify the theoretical findings and illustrate its usefulness on practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akbas, M., Kaya, S., Mohebujjaman, M., Rebholz, L.: Numerical analysis and testing of a fully discrete decoupled penalty projection algorithm for MHD in Elsässer variable. Int. J. Numer. Anal. Model. 13, 90–113 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Alfvén, H.: Existence of electromagnetic–hydrodynamic waves. Nature 150, 405–406 (1942)

    Article  Google Scholar 

  3. Amezcua, J., Kalnay, E., Williams, P.D.: The effects of the RAW filter on the climatology and forecast skill of the speedy model. Mon. Weather Rev. 139(2), 608–619 (2011)

    Article  Google Scholar 

  4. Asselin, R.: Frequency filter for time integrations. Mon. Weather Rev. 100, 487–490 (1972)

    Article  Google Scholar 

  5. Biskamp, D.: Magnetohydrodynamic Turbulence. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  6. Burman, E., Linke, A.: Stabilized finite element schemes for incompressible flow using Scott–Vogelius elements. Appl. Numer. Math. 58(11), 1704–1719 (2008)

    Article  MathSciNet  Google Scholar 

  7. Case, M., Labovsky, A., Rebholz, L., Wilson, N.: A high physical accuracy method for incompressible magnetohydrodynamics. Int. J. Numer. Anal. Model. Ser. B 1(2), 219–236 (2010)

    MathSciNet  Google Scholar 

  8. Davidson, P.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  9. DeCaria, V., Layton, W., Zhao, H.: A Time-Accurate, Adaptive Discretization for Fluid Flow Problems. arXiv:1810.06705.pdf

  10. Friedel, H., Grauer, R., Marliani, C.: Adaptive mesh refinement for singular current sheets in incompressible magnetohydrodynamic flows. J. Comput. Phys. 134, 190–198 (1997)

    Article  Google Scholar 

  11. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations, Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

    Book  Google Scholar 

  12. Gresho, P.M., Sani, R.L.: Incompressible Flow and the Finite Element Method. Wiley, New York (1998)

    MATH  Google Scholar 

  13. Gunzburger, M., Ladyzhenskaya, O., Peterson, J.: On the global unique solvability of initial-boundary value problems for the coupled modified Navier–Stokes and Maxwell equations. J. Math. Fluid Mech. 6, 462–482 (2004)

    Article  MathSciNet  Google Scholar 

  14. Gunzburger, M., Trenchea, C.: Analysis and discretization of an optimal control problem for the time-periodic MHD equations. J. Math. Anal. Appl. 308(2), 440–466 (2005)

    Article  MathSciNet  Google Scholar 

  15. Guzel, A., Layton, W.: Time filters increase accuracy of the fully implicit method. BIT Numer. Math. 58(2), 301–315 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  17. He, Y., Sun, W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 45, 837–869 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  19. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem, IV: error analysis for the second order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  20. Hillebrandt, W., Kupka, F.: Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, vol. 756. Springer, Berlin (2009)

  21. Jiang, N., Mohebujjaman, M., Rebholz, L., Trenchea, C.: An optimally accurate discrete regularization for second order timestepping methods for Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 310, 388–405 (2016)

    Article  MathSciNet  Google Scholar 

  22. John, V.: Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics (2016)

  23. Ladyzhenskaya, O., Solonnikov, V.: Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid. Trudy Mat. Inst. Steklov. 59, 115–173 (1960)

    MathSciNet  Google Scholar 

  24. Layton, W.: Introduction to the Numerical Analysis of Incompressible Viscous Flows. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  25. Layton, W., Li, Y., Trenchea, C.: Recent developments in IMEX methods with time filters for systems of evolution equations. J. Comput. Appl. Math. 299, 50–67 (2016)

    Article  MathSciNet  Google Scholar 

  26. Layton, W., Manica, C., Neda, M., Olshanskii, M., Rebholz, L.: On the accuracy of the rotation form in simulations of the Navier-Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)

    Article  MathSciNet  Google Scholar 

  27. Li, Y., Trenchea, C.: A higher-order Robert–Asselin type time filter. J. Comput. Phys. 259, 23–32 (2014)

    Article  MathSciNet  Google Scholar 

  28. Liu, J.-G., Pego, R.: Stable discretization of magnetohydrodynamics in bounded domains. Commun. Math. Sci. 8(1), 235–251 (2010)

    Article  MathSciNet  Google Scholar 

  29. Liu, J.-G., Wang, W.: Energy and helicity preserving schemes for hydro and magnetohydro-dynamics flows with symmetry. J. Comput. Phys. 200, 8–33 (2004)

    Article  MathSciNet  Google Scholar 

  30. Onofri, M., Primavera, L., Malara, F., Veltri, P.: Three-dimensional simulations of magnetic reconnection in slab geometry. Phys. Plasmas 11(10), 4837–4846 (2004)

    Article  Google Scholar 

  31. Punsly, B.: Black Hole Gravitohydromagnetics, Astrophys. Space Science Library, vol. 355. Springer, Berlin (2009)

    Book  Google Scholar 

  32. Shehzad, S.A., Hayat, T., Alsaedi, A.: Influence of convective heat and mass conditions in MHD flow of nanofluid. Bull. Pol. Acad. Sci. Tech. Sci. 63, 465–474 (2015)

    Google Scholar 

  33. Williams, P.D.: A proposed modification to the Robert–Asselin time filter. Mon. Weather Rev. 137(8), 2538–2546 (2009)

    Article  Google Scholar 

  34. Williams, P.D.: The RAW filter: an improvement to the Robert–Asselin filter in semi-implicit integrations. Mon. Weather Rev. 139(6), 1996–2007 (2011)

    Article  Google Scholar 

  35. Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74, 543–554 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songül Kaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cibik, A., Eroglu, F.G. & Kaya, S. Analysis of Second Order Time Filtered Backward Euler Method for MHD Equations. J Sci Comput 82, 38 (2020). https://doi.org/10.1007/s10915-020-01142-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01142-y

Keywords

Navigation