Skip to main content
Log in

Boundary Scheme for a Discrete Kinetic Approximation of the Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with boundary treatments of a discrete kinetic approximation proposed in Guo et al. (J Sci Comput 16(4):569–585, 2001) for the Navier–Stokes equations. For this approximation we find that the widely used bounce-back scheme does not have second-order accuracy even the boundary is located at the middle of two neighbouring grid points. To remedy this, a new boundary scheme is proposed. It is shown with the Maxwell iteration that the new scheme is second-order accurate if the boundary is located at the middle of two neighbouring grid points, and is first-order accurate otherwise. In this regard, the present boundary scheme is a natural extension of the bounce-back scheme to the discrete kinetic approximation. Numerical experiments are conducted to validate the accuracy of the scheme and show its utility for both straight and curved boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 55(14), 1505–1508 (1986)

    Article  Google Scholar 

  2. McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61(20), 2332–2335 (1988)

    Article  Google Scholar 

  3. Higuera, F., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9(4), 345–349 (1989)

    Article  Google Scholar 

  4. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  5. Guo, Z., Shu, C.: Lattice Boltzmann Method and its Applications in Engineering. Word Scientific Publishing Company, Singapore (2013)

    Book  MATH  Google Scholar 

  6. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)

    Article  Google Scholar 

  7. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30(1), 329–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aidun, C.K., Clausen, J.R.: Lattice Boltzmann method for complex flows. Ann. Rev. Fluid Mech. 42(1), 439–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhatnagar, P.L., Gross, E.P., Krook, M.K.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  10. Qian, Y.H., d’Humiéres, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  11. d’Humières, D.: Generalized lattice-Boltzmann equations. In: Shizgal, B.D., Weave, D.P. (eds.), Rarefied Gas Dynamics: Theory and Simulations, Prog. Astronaut. Aeronaut., vol. 159, pp. 450–458. AIAA, Washington DC (1992)

  12. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546 (2000)

    Article  MathSciNet  Google Scholar 

  13. Ginzburg, I., Verhaeghe, F., d’Humières, D.: Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3(2), 427–478 (2008)

    MathSciNet  Google Scholar 

  14. Ginzburg, I., Verhaeghe, F., d’Humières, D.: Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme. Commun. Comput. Phys. 3(3), 519–581 (2008)

    MathSciNet  Google Scholar 

  15. Karlin, I.-V., Gorban, A.-N., Succi, S., Boffi, V.: Maximum entropy principle for lattice kinetic equation. Phys. Rev. Lett. 81(1), 6 (1998)

    Article  Google Scholar 

  16. Karlin, I.-V., Ferrante, A., Öttinger, H.C.: Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47(2), 182–188 (1999)

    Article  Google Scholar 

  17. Ansumali, S., Karlin, I.-V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63(6), 798–804 (2003)

    Article  Google Scholar 

  18. Junk, M., Rao, S.V.: A new discrete velocity method for Navier–Stokes equations. J. Comput. Phys. 151, 178–198 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Inamuro, T.: A lattice kinetic scheme for incompressible viscous flows with heat transfer. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360(1792), 477–484 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Latt, J., Chopard, P.: Lattice Boltzmann method with regularized pre-collision distribution functions. Math. Comput. Simul. 72, 165–168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, X., Shi, B., Chai, Z.: Generalized modification in the lattice Bhatnagar–Gross–Krook model for incompressible Navier–Stokes equations and convection–diffusion equations. Phys. Rev. E 90, 013309 (2014)

    Article  Google Scholar 

  22. Wang, L., Mi, J.C., Meng, X.H., Guo, Z.L.: A localized mass-conserving lattice Boltzmann approach for non-Newtonian fluid flows. Commun. Comput. Phys. 17(4), 908–924 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, Z., Zheng, C., Zhao, T.S.: A lattice BGK scheme with general propagation. J. Sci. Comput. 16(4), 569–585 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. McNamara, G.R., Garcia, A.L., Alder, B.J.: Stabilization of thermal lattice Boltzmann models. J. Stat. Phys. 81(1–2), 395–408 (1995)

    Article  MATH  Google Scholar 

  25. Qian, Y.: Fractional propagation and the elimination of staggered invariants in lattice-BGK models. Int. J. Mod. Phys. C 8(4), 753–761 (1997)

    Article  MathSciNet  Google Scholar 

  26. Pavlo, P., Vahala, G., Vahala, L., Soe, M.: Linear stability analysis of thermo-lattice Boltzmann models. J. Comput. Phys. 139, 79–91 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, Z., Zhao, T.S.: Finite-difference-based lattice Boltzmann model for dense binary mixtures. Phys. Rev. E 71, 026701 (2005)

    Article  Google Scholar 

  28. Shi, Y., Zhao, T.S., Guo, Z.: Lattice Boltzmann method for incompressible flows with large pressure gradients. Phys. Rev. E 73, 026704 (2006)

    Article  Google Scholar 

  29. Guo, Z., Shi, B., Zheng, C.: Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows. Philos. Trans. R. Soc. A 369, 2283–2291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fakhari, A., Lee, T.: Numerics of the lattice Boltzmann method on nonuniform grids: standard LBM and finite-difference LBM. Comput. Fluids 107, 205–213 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lou, Q., Guo, Z.: Interface-capturing lattice Boltzmann equation model for two-phase flows. Phys. Rev. E 91, 013302 (2015)

    Article  MathSciNet  Google Scholar 

  32. Xu, H., Dang, Z.: Finite difference lattice Boltzmann model based on the two-fluid theory for multicomponent fluids. Numer. Heat Transf. Part B Fundam. 72(3), 250–267 (2017)

    Article  Google Scholar 

  33. Guo, X., Shi, B., Chai, Z.: General propagation lattice Boltzmann model for nonlinear advection–diffusion equations. Phys. Rev. E 97, 043310 (2018)

    Article  MathSciNet  Google Scholar 

  34. Hu, W.-Q., Jia, S.-L.: General propagation lattice Boltzmann model for variable-coefficient non-isospectral KdV equation. Appl. Math. Lett. 91, 61–67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ladd, A.J.C.: Numerical simulatons of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ladd, A.J.C.: Numerical simulatons of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339 (1994)

    Article  MathSciNet  Google Scholar 

  37. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)

    Article  MATH  Google Scholar 

  38. Yu, D., Mei, R., Shyy, W.: A unified boundary treatment in lattice Boltzmann method. In: AIAA Paper, 2003-0953 (2003)

  39. Yin, X., Zhang, J.: An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method. J. Comput. Phys. 231, 4295–4303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Geier, M., Schönherr, M., Pasquali, A., Krafczky, M.: The cumulant lattice Boltzmann equation in three dimensiond: theory and validation. Comput. Math. Appl. 70, 507–547 (2015)

    Article  MathSciNet  Google Scholar 

  41. Yong, W.-A., Zhao, W., Luo, L.-S.: Theory of the lattice Boltzmann method: derivation of macroscopic equations via the Maxwell iteration. Phys. Rev. E 93, 033310 (2016)

    Article  MathSciNet  Google Scholar 

  42. Zhao, W., Yong, W.-A.: Maxwell iteration for the lattice Boltzmann method with diffusive scaling. Phys. Rev. E 95, 033311 (2017)

    Article  MathSciNet  Google Scholar 

  43. Xu, H., Sagaut, P.: Analysis of the absorbing layers for the weakly-compressible lattice Boltzmann methods. J. Comput. Phys. 245, 14–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhuo, C., Sagaut, P.: Acoustic multipole sources for the regularized lattice Boltzmann method: comparison with multiple-relaxation-time models in the inviscid limit. Phys. Rev. E 95, 063301 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11471185, 11801030 and 11861131004) and by the Tsinghua University Initiative Scientific Research Program (20151080424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Yong, WA. Boundary Scheme for a Discrete Kinetic Approximation of the Navier–Stokes Equations. J Sci Comput 82, 71 (2020). https://doi.org/10.1007/s10915-020-01180-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01180-6

Keywords

Mathematics Subject Classification

Navigation