Skip to main content
Log in

Error Analysis of a Decoupled, Linear Stabilization Scheme for the Cahn–Hilliard Model of Two-Phase Incompressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Here, we carry out rigorous error analysis for a first-order in time, linear, fully decoupled and energy stable scheme for solving the Cahn–Hilliard phase-field model of two-phase incompressible flows, namely Cahn–Hilliard–Navier–Stokes problem (Shen and Yang, SIAM J Numer Anal, 2015). The error estimates are for phase field variable, chemical potential, velocity and further the pressure in \(L^2\) norm and \(L^{\infty }\) norm. The scheme combines the projection method, the explicit stabilizing decoupling technique, and the linear stabilization approach together. We further derive the boundness of numerical solution in \(L^\infty \) norm with the mathematical deduction, and deal with the complex splitting error arising from the decoupling technique. Optimal error estimates are derived for the semi-discrete-in-time scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyer, F., Minjeaud, S.: Numerical schemes for a three component Cahn–Hilliard model. ESAIM M2AN 45, 697–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, Y., Choi, H., Shen, J.: Error estimates for time discretizations of Cahn–Hilliard and Allen–Cahn phase-field models for two-phase incompressible flows. Numer. Math. 137, 419–449 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, Y., Shen, J.: Error estimates for a fully discretized scheme to a Cahn–Hilliard and Allen–Cahn model for two-phase incompressible flows. Math. Comput. 87(313), 2057–2090 (2018)

    Article  MATH  Google Scholar 

  5. Chen, F., Shen, J.: Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn–Hilliard systems. Commun. Comput. Phys. 05, 1189–1208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 192–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Computational and mathematical models of microstructural evolution (San Francisco, CA, 1998), volume 529 of Mater. Res. Soc. Sympos. Proc., pp. 39–46. MRS (1998)

  9. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76(258), 539–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, X., Prol, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)

    Article  MathSciNet  Google Scholar 

  12. Feng, X., Prol, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)

    Article  MathSciNet  Google Scholar 

  13. Forest, M.G., Wang, Q., Yang, X.: LCP droplet dispersions: a two-phase, diffuse-interface kinetic theory and global droplet defect predictions. Soft Matter 8, 9642–9660 (2012)

    Article  Google Scholar 

  14. Sun, S., Yao, J., Li, A., Zhu, G., Kou, J.: Decoupled, energy stable schemes for a phase field surfactant model. Comput. Phys. Commun. 233, 67–77 (2018)

    Article  MathSciNet  Google Scholar 

  15. Grun, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 51, 3036–3061 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guermond, J.L., Quartapelle, L.: A projection FEM for variable density incompressible flows. J. Comput. Phys. 165(1), 167–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guermond, J.L., Shen, J., Yang, X.: Error analysis of fully discrete velocity-correction methods for incompressible flows. Math. Comput. 77, 1387–1405 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows. J. Sci. Comput. 70, 965–989 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guermond, J.L., Shen, J.: On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73, 1719–1937 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kapustina, M., Tsygakov, D., Zhao, J., Wessler, J., Yang, X., Chen, A., Roach, N., Wang, Q., Elston, T.C., Jacobson, K., Forest, M.G.: Modeling the excess cell surface stored in a complex morphology of bleb-like protrusions. PLOS Comput. Biol. 12, e1004841 (2016)

    Article  Google Scholar 

  24. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Shen, J.: On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase field model. arXiv:1905.08504v1 (2019)

  26. Little, T.S., Mironov, V., Nagy-Mehesz, A., Markwald, R., Sugi, Y., Lessner, S.M., Sutton, M.A., Liu, X., Wang, Q., Yang, X., Blanchette, J.O., Skiles, M.: Engineering a 3D, biological construct: representative research in the South Carolina project for organ biofabrication. Biofabrication 3, 030202 (2011)

    Article  Google Scholar 

  27. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, C., Shen, J., Yang, X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2(6), 1184–1198 (2008)

    MATH  Google Scholar 

  30. Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci. Comput. 62, 601–622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, C., Walkington, N. J.: Arch. Rat. Mech. Ana.

  32. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1978):2617–2654, (1998)

  33. Ma, L., Chen, R., Yang, X., Zhang, H.: Numerical approximations for Allen–Cahn type phase field model of two-phase incompressible fluids with moving contact lines. Commun. Comput. Phys. 21(3), 867–889 (2017)

    Article  MathSciNet  Google Scholar 

  34. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods for Partial Differ Equ. 29(2), 584–618 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nochetto, R.H., Salgado, A.J., Tomas, I.: A diffuse interface model for two-phase ferrofluid flows. Comput. Meth. Appl. Mech. and Eng. 309, 497–531 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qin, Y., Xu, Z., Zhang, Z., Zhang, H.: Fully decoupled, linear and unconditionally energy stable schemes for the binary fluid-surfactant model. J. Comput. Phys., submitted (2019)

  37. Shen, J.: Remarks on the pressure error estimates for the projection methods. Numer. Math. 67, 513–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal 50(1), 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shen, J., Xu, J.: Stabilized predictor-corrector schemes for gradient flows with strong anisotropic free energy. Commun. Comput. Phys. 24(3), 635–654 (2018)

    Article  MathSciNet  Google Scholar 

  41. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. arXiv:1710.01331v1 (2018)

  42. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shen, J., Yang, X.: An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys. 228, 2978–2992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, J., Yang, X.: Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31(5), 743–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Disc. Conti. Dyn. Sys.-A, 28:1669–1691 (2010)

  46. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscositites. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shen, J., Yang, X.: Decoupled energy stable schemes for phase filed models of two phase complex fluids. SIAM J. Sci. Comput. 36, B122–B145 (2014)

    Article  MATH  Google Scholar 

  48. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Shin, J., Choi, Y., Kim, J.: An unconditionally stable numerical method for the viscous Cahn–Hilliard equation. Disc. Cont. Dyn. Sys. B 19, 1734–1747 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  52. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu, Z., Yang, X., Zhang, H., Xie, Z.: Efficient and linear schemes for anisotropic Cahn–Hilliard equations using the stabilized invariant energy quadratization (S-IEQ) approach. Comput. Phys. Commun. 238, 36–49 (2019)

    Article  MathSciNet  Google Scholar 

  54. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218, 417–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yang, X., Forest, G., Liu, C., Shen, J.: Shear cell rupture of nematic droplets in viscous fluids. J. Non-Newtonian Fluid Mech. 166, 487–499 (2011)

    Article  MATH  Google Scholar 

  57. Yang, X., Forest, M.G., Li, H., Liu, C., Shen, J., Wang, Q., Chen, F.: Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids. J. Comput. Phys. 236, 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal equation. J. Comput. Phys. 330, 1116–1134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model. Comput. Meth. Appl. Mech. Eng. 315, 691–712 (2017)

    Article  MATH  Google Scholar 

  60. Yang, X., Lu, J.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Meth. Appl. Mech. Eng. 318, 1005–1029 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yang, X., Mironov, V., Wang, Q.: Modeling fusion of cellular aggregates in biofabrication using phase field theories. J. Theor. Biol. 303, 110–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yang, X., Sun, Y., Wang, Q.: Phase field approach for multicelluar aggregate fusion in biofabrication. J. Bio. Med. Eng. 135(7), 71005 (2013)

    Google Scholar 

  63. Yang, X., Zhang, G., He, X.: Linear, convergence analysis of an unconditionally energy stable projection scheme for magneto-hydrodynamic equqtions. Appl. Numer. Math. 136, 235–256 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yu, H., Yang, X.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhao, J., Li, H., Wang, Q., Yang, X.: A linearly decoupled energy stable scheme for phase-field models of three-phase incompressible flows. J. Sci. Comput. 70, 1367–1389 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhao, J., Shen, Y., Happasalo, M., Wang, Z., Wang, Q.: A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. J. Theor. Biol. 392, 83–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhao, J., Wang, Q.: A 3D hydrodynamic model for cytokinesis of eukaryotic cells. Commun. Comput. Phys. 19(3), 663–681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for immiscible mixtures of nematic liquid crystals and viscous fluids. Comput. Meth. Appl. Mech. Eng. 310, 77–97 (2016)

    Article  Google Scholar 

  71. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 110(3), 279–300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  72. Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals. Comput. Meth. Appl. Mech. Eng. 318, 803–825 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38, A3264–A3290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Z. Xu was partially supported by China Scholarship Council (No. 201706040140). X. Yang was partially supported by NSF DMS-1720212 and 1818783. H. Zhang was partially supported by NSFC-11471046 and NSFC-11571045. This paper is dedicated to the memory of Professor Hui Zhang, one of the co-authors, who passed suddenly away on Feb 26, 2020. There are no words to express our sorrow for his loss as close friends. The co-author, Z. Xu wishes to express the highest respect and gratitude to her passed thesis advisor, Professor Hui Zhang, for his help on the research and life. His rigorous attitude and optimistic spirit always inspire us. He will be missed by us forever.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Yang, X. & Zhang, H. Error Analysis of a Decoupled, Linear Stabilization Scheme for the Cahn–Hilliard Model of Two-Phase Incompressible Flows. J Sci Comput 83, 57 (2020). https://doi.org/10.1007/s10915-020-01241-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01241-w

Keywords

Mathematics Subject Classification

Navigation