Skip to main content
Log in

Admissible Concentration Factors for Edge Detection from Non-uniform Fourier Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Edge detection from Fourier data has been emerging in many applications. The concentration factor method has been widely used in detecting edges from Fourier data. We present a theoretic analysis of the concentration factor method for non-uniform Fourier data in this paper. Specifically, we propose admissible conditions for the concentration factors such that the edge detector converges to a smoothed approximation of the jump function. Moreover, we also introduce some specific choices of admissible concentration factors and present estimates of convergence rates correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  2. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston (2003)

    Book  Google Scholar 

  3. Churchill, V., Gelb, A.: Detecting edges from non-uniform fourier data via sparse bayesian learning. J. Sci. Comput. 80, 762–783 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cochran, D., Gelb, A., Wang, Y.: Edge detection from truncated Fourier data using spectral mollifiers. Adv. Comput. Math. 38, 737–762 (2013)

    Article  MathSciNet  Google Scholar 

  5. Gelb, A., Cates, D.: Detection of edges in spectral data. III. Refinement of the concentration method. J. Sci. Comput. 36, 1–43 (2008)

    Article  MathSciNet  Google Scholar 

  6. Gelb, A., Hines, T.: Detection of edges from nonuniform fourier data. J. Fourier Anal. Appl. 17, 1152–1179 (2011)

    Article  MathSciNet  Google Scholar 

  7. Gelb, A., Song, G.: Detecting edges from non-uniform fourier data using fourier frames. J. Sci. Comput. 71, 737–758 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MathSciNet  Google Scholar 

  9. Gelb, A., Tadmor, E.: Detection of edges in spectral data. II. Nonlinear enhancement. SIAM J. Numer. Anal. 38, 1389–1408 (2000). (electronic)

    Article  MathSciNet  Google Scholar 

  10. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28, 279–306 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hines, E., Watson, P.: Application of edge detection techniques to detection of the bright band in radar data. Image Vision Comput. 1, 221–226 (1983)

    Article  Google Scholar 

  12. Sharma, P., Diwakar, M., Choudhary, S.: Application of edge detection for brain tumor detection. Int. J. Comput. Appl. 58, 21–25 (2012)

    Google Scholar 

  13. Song, G., Gelb, A.: Approximating the inverse frame operator from localized frames. Appl. Comput. Harmon. Anal. 35, 94–110 (2013)

    Article  MathSciNet  Google Scholar 

  14. Stefan, W., Viswanathan, A., Gelb, A., Renaut, R.: Sparsity enforcing edge detection method for blurred and noisy fourier data. J. Sci. Comput. 50, 536–556 (2012)

    Article  MathSciNet  Google Scholar 

  15. Tadmor, E., Zou, J.: Three novel edge detection methods for incomplete and noisy spectral data. J. Fourier Anal. Appl. 14, 744 (2008)

    Article  MathSciNet  Google Scholar 

  16. Vincent, O., Folorunso, O.: A descriptive algorithm for sobel image edge detection. In: Proceedings of Informing Science and IT Education Conference (InSITE), vol. 40, pp. 97–107 (2009)

  17. Viswanathan, A., Gelb, A., Cochran, D.: Iterative design of concentration factors for jump detection. J. Sci. Comput. 51, 631–649 (2012)

    Article  MathSciNet  Google Scholar 

  18. Yim, Y.U., Oh, S.-Y.: Three-feature based automatic lane detection algorithm (TFALDA) for autonomous driving. IEEE Trans. Intell. Transp. Syst. 4, 219–225 (2003)

    Article  Google Scholar 

  19. Young, R.: An Introduction of Nonharmonic Fourier Series. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Song: Supported in part by National Science Foundation under grants DMS-1521661 and DMS-1939203.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Tucker, G. & Xia, C. Admissible Concentration Factors for Edge Detection from Non-uniform Fourier Data. J Sci Comput 85, 3 (2020). https://doi.org/10.1007/s10915-020-01307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01307-9

Navigation