Skip to main content
Log in

A Divergence-Conforming DG-Mixed Finite Element Method for the Stationary Boussinesq Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we propose and analyze a new fully divergence-conforming finite element method for the numerical simulation of the Boussinesq problem, describing the motion of a non-isothermal incompressible fluid subject to a heat source. We consider the standard velocity-pressure formulation for the fluid flow equation and the dual-mixed one for the heat equation. In this way, the unknowns of the resulting formulation are given by the velocity, the pressure, the temperature and the gradient of the latter. The corresponding Galerkin scheme makes use of a nonconforming exactly divergence-free approach to approximate the velocity and pressure, and employs standard \(H(\mathrm{div})\)-conforming elements for the gradient of the temperature and discontinuous elements for the temperature. Since here we utilize a dual-mixed formulation for the heat equation, the temperature Dirichlet boundary condition becomes natural, thus there is no need of introducing a sufficiently small discrete lifting to prove well-posedness of the discrete problem. Moreover, the resulting numerical scheme yields exactly divergence-free velocity approximations; thus, it is probably energy-stable without the need of modifying the underlying differential equations, and provide an optimal convergent approximation of the temperature gradient. The analysis of the continuous and discrete problems is carried out by means of a fixed-point strategy under a sufficiently small data assumption. We derive optimal error estimates in the mesh size for smooth solutions and provide several numerical results illustrating the performance of the method and confirming the theoretical rates of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allali, K.: A priori and a posteriori error estimates for Boussinesq equations. Int. J. Numer. Anal. Model. 2(2), 179–196 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Almonacid, J.A., Gatica, G.N., Oyarzúa, R.: A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo 55(3), 36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez, M., Gatica, G.N., Ruiz, R.: An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM Math. Model. Numer. Anal. 49(5), 1399–1427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02)

  6. Barakos, G., Mitsoulis, E., Assimacopoulos, D.: Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids 18, 695–719 (1994)

    Article  MATH  Google Scholar 

  7. Beniítez, M., Bermúdez, A.: A second order characteristics finite element scheme for natural convection problems. J. Comput. Appl. Math. 235(11), 3270–3284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier-Stokes et de la chaleur: le modéle et son approximation par éléments finis. RAIRO Modél. Math. Anal. Numér. 29(7), 871–921 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Cham (2013)

    Book  MATH  Google Scholar 

  10. Camaño, J., Muñoz, C., Oyarzúa, R.: Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48, 114–130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chacón Rebollo, T., Gómez Mármol, M., Hecht, F., Rubino, S., Sánchez Muñoz, I.: A high-order local projection stabilization method for natural convection problems. J. Sci. Comput. 74(2), 667–692 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Çibik, A., Songül, K.: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381(2), 469–484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solution of the Navier–Stokes equations. J. Sci. Comput. 31(1–2), 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equa. 32(2), 445–478 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colmenares, E., Gatica, G.N., Oyarzúa, R.: An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54(1), 167–205 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colmenares, E., Gatica, G.N., Moraga, S.: A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM: Math. Model. Numer. Anal. 54(5), 1525–1568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dalal, A., Das, M.: Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numer. Heat Transf. Part A Appl. 49(3), 301–322 (2006)

    Article  Google Scholar 

  19. De Vahl Davis, G.: Natural convection of air in a square cavity: a benchmark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  20. Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques & Applications, vol. 69. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  21. Ern, A., Guermond, J.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  MATH  Google Scholar 

  22. Farhloul, M., Nicaise, S., Paquet, L.: A mixed formulation of Boussinesq equations: analysis of nonsingular solutions. Math. Comput. 69(231), 965–986 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farhloul, M., Nicaise, S., Paquet, L.: A refined mixed finite element method for the Boussinesq equations in polygonal domains. IMA J. Numer. Anal. 21(2), 525–551 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014)

    Book  Google Scholar 

  25. Girault, V., Raviart, P.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  26. Girault, V., Rivieére, B., Wheeler, M.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74(249), 53–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hansbo, P., Larson, M.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191(17–18), 1895–1908 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kovasznay, L.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  29. LeSaint, P., Raviart, P.: On a finite element method for solving the neutron transport equation. Mathematical aspects of finite elements in partial differential equations. In: Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974, Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, pp. 89–123. Academic Press, New York (1974)

  30. Lube, G., Knopp, T., Rapin, G., Gritzki, R., Rösler, M.: Stabilized finite element methods to predict ventilation efficiency and thermal comfort in buildings. Int. J. Numer. Methods Fluids 57(9), 1269–1290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Manzari, M.: An explicit finite element algorithm for convective heat transfer problems. Int. J. Numer. Methods Heat Fluid Flow 9, 860–877 (1999)

    Article  MATH  Google Scholar 

  32. Massarotti, N., Nithiarasu, P., Zienkiewich, O.: Characteristic-based-split (CBS) algorithm for incompressible flow problems with heat transfer. Int. J. Numer. Methods Heat Fluid Flow 8, 969–990 (1998)

    Article  MATH  Google Scholar 

  33. Oyarzúa, R., Qin, T., Schötzau, D.: An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34(3), 1104–1135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oyarzúa, R., Zuñiga, P.: Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters. J. Comput. Appl. Math. 323, 71–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  36. Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for Incompressible Flows. SIAM J. Numer. Anal. 40(6), 2171–2194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tabata, M., Tagami, D.: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100(2), 351–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Waluga, C.: Analysis of hybrid discontinuous Galerkin methods for incompressible flow problems. Ph.D. Thesis, RWTH Aachen, Germany (2012)

  39. Wan, D., Patnaik, B., Wei, G.: A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numer. Heat Transf. 40, 199–228 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Oyarzúa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by CONICYT-Chile through Fondecyt project 1163125 and project AFB170001 of the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnológicos de Excelencia con Financiamiento Basal; and by Universidad del Bío-Bío through DIUBB project GI 171508/VC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyarzúa, R., Serón, M. A Divergence-Conforming DG-Mixed Finite Element Method for the Stationary Boussinesq Problem. J Sci Comput 85, 14 (2020). https://doi.org/10.1007/s10915-020-01317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01317-7

Keywords

Mathematics Subject Classification

Navigation