Skip to main content
Log in

A Quasi-Conservative Discontinuous Galerkin Method for Solving Five Equation Model of Compressible Two-Medium Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we develop a quasi-conservative discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows by solving the five-equation transport model. This spatial discretization is a direct extension of the quasi-conservative finite volume discretization to the discontinuous Galerkin framework, thus, preserves uniform velocity and pressure fields at an isolated material interface. Furthermore, for discontinuities with a large pressure ratio, low density, and a dramatic change of material property where nonphysical values may occur, a strategy for imposing the bound-preserving limiting for volume fraction and a positivity-preserving limiting for density of each fluid and internal energy is developed and analyzed based on the quasi-conservative DG(\(p_1\)) discretization. Typical test cases for both one- and two-dimensional problems are provided to demonstrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Wang, C.W., Shu, C.-W.: An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Lu, H.L., Zhu, J., Wang, D.H., Zhao, N.: Runge-Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow. Comput. Fluids 126, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228, 4012–4037 (2009)

    MATH  Google Scholar 

  4. Qiu, J.X., Liu, T.G., Khoo, B.C.: Simulations of compressible two-medium flow by Runge–Kutta discontinuous Galerkin methods with the Ghost Fluid Method. Commun. Comput. Phys. 3, 479–504 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Xu, L., Liu, T.G.: Accuracies and conservation errors of various Ghost Fluid Methods for multi-medium Riemann problem. J. Comput. Phys. 230, 4975–4990 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152, 457–492 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006)

    MATH  Google Scholar 

  8. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    MATH  Google Scholar 

  9. Deng, X.-L., Li, M.J.: Simulating compressible two-medium flows with sharp-interface adaptive Runge–Kutta discontinuous Galerkin methods. J. Sci. Comput. 5, 1–22 (2017)

    Google Scholar 

  10. Pandare, A.K., Luo, H.: A robust and efficient finite volume method for compressible inviscid and viscous two-phase flows. J. Comput. Phys. 371, 67–91 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicompoent flow problems. J. Comput. Phys. 219, 715–732 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Shyue, K.-M., Xiao, F.: An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach. J. Comput. Phys. 268, 326–354 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Abgrall, R.: How to prevent pressure oscillations in multicompoent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Shukla, R.K., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229, 7411–7439 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21, 1115–1145 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Deng, X., Inaba, S., Xie, B., Shyue, K.-M., Xiao, F.: High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces. J. Comput. Phys. 371, 945–966 (2018)

    MathSciNet  MATH  Google Scholar 

  18. He, Z.W., Tian, B.L., Zhang, Y.S., Gao, F.J.: Characteristic-based and interface-sharpening algorithm for high-order simulations of immiscible compressible multi-material flows. J. Comput. Phys. 333, 247–268 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Parés, C., Muñoz-ruiz, M.L.: On some difficulties of the numerical approximation of nonconservative hyperbolic systems. Bol. Soc. Esp. Mat. Apl. 47, 19–48 (2009)

    MATH  Google Scholar 

  20. Shyue, K.-M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Dumbser, M., Toro, E.F.: A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput. 48, 70–88 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Xiong, T., Shu, C.-W., Zhang, M.P.: WENO scheme with subcell resolution for computing nonconservative Euler equations with applications to one-dimensional compressible two-medium flows. J. Sci. Comput. 53, 222–247 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. Journal de Mathámatiques Pures et Appliquáes 74, 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Wang, C., Zhang, X., Shu, C.-W., Ning, J.G.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Du, J., Wang, C., Qian, C.G., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput. 41, B250–B273 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Ivings, M.J., Causon, D.M., Toro, E.F.: On Riemann solvers for compressible liquids. Int. J. Numer. Meth. Fluids 28, 395–418 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional system. J. Comput. Phys. 141, 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997)

    MATH  Google Scholar 

  33. Guermond, J.-L., Nazarov, M., Popov, B., Tomas, I.: Second-order invariant domain preserving approximation of the Euler equations using convex limiting. SIAM J. Sci. Comput. 40, A3211–A3239 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Henry de Frahan, M.T., Varadan, S., Johnsen, E.: A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces. J. Comput. Phys. 280, 489–509 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Cheng, J., Zhang, F., Liu, T.G.: A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows. J. Comput. Phys. 403, 109059 (2020)

    MathSciNet  Google Scholar 

  36. Qiu, J.X., Shu, C.-W.: Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Luo, H., Baum, J.D., Löhner, R.: On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194, 304–328 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Xu, L., Liu, T.G.: Explicit interface treatments for compressible gas-liquid simulations. Comput. Fluids 153, 34–48 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Cheng, J., Shu, C.-W.: Positivity-preserving Lagrangian scheme for multi-material compressible flow. J. Comput. Phys. 257, 143–168 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for the time spent to review this manuscript and helpful comments to improve the first draft of the manuscript. This work is supported by the National Natural Science Foundation of China No.U1730118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this appendix, we briefly describe the derivation of the quasi-conservative DG spatial discretization for the five-equation transport model. In order to derive the spatial discretization, we multiply the governing equations Eq. (1) with a basis function \(\phi _k\) on a given cell \(I_j\), perform an integration by parts, and we have

$$\begin{aligned} \begin{aligned}&\int _{I_j} \frac{\partial (z_1\rho _1)_h}{\partial t} \phi _k \mathrm {d}x + \widehat{(z_1\rho _1)_hu_h} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{(z_1\rho _1)_hu_h} \phi _k\Big |_{j-\frac{1}{2}} - \int _{I_j} (z_1\rho _1)_h u_h\frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial (z_2\rho _2)_h}{\partial t} \phi _k \mathrm {d}x + \widehat{(z_2\rho _2)_hu_h} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{(z_2\rho _2)_hu_h} \phi _k\Big |_{j-\frac{1}{2}} - \int _{I_j} (z_2\rho _2)_h u_h\frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial \rho u_h}{\partial t} \phi _k \mathrm {d}x + \widehat{(\rho _h u_h^2 + p_h)} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{(\rho _h u_h^2 + p_h)} \phi _k\Big |_{j-\frac{1}{2}} \\&\quad - \int _{I_j} (\rho _h u_h^2+p_h) \frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial E_h}{\partial t} \phi _k \mathrm {d}x + \widehat{u_h(E_h+p_h)} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{u_h(E_h+p_h)} \phi _k\Big |_{j-\frac{1}{2}} \\&\quad - \int _{I_j} u_h(E_h+p_h) \frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial (z_1)_h}{\partial t} \phi _k \mathrm {d}x + \widehat{u_h(z_1)_h} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{u_h(z_1)_h} \phi _k\Big |_{j-\frac{1}{2}} + \int _{I_j} (z_1)_h \frac{\partial u_h\phi _k}{\partial x}\mathrm {d}x = 0,\\ \end{aligned} \end{aligned}$$
(78)

where \((\widehat{(z_1\rho _1)_hu_h},\widehat{(z_2\rho _2)_hu_h},\widehat{\rho _h u_h^2 + p_h},\widehat{u_h(E_h+p_h)},\widehat{u_h(z_1)_h})^\top \Big |_{j\pm \frac{1}{2}}\) are the numerical flux vectors at the cell interface \(x=x_{j\pm \frac{1}{2}}\), respectively, and will be specified later.

As we would like to remove the spatial derivatives with respective to the velocity \(u_h\) in the last cell integral in Eq. (78), therefore, an extra integration by parts is performed locally in the cell \(I_j\), then we obtain

$$\begin{aligned} \begin{aligned}&\int _{I_j} \frac{\partial (z_1\rho _1)_h}{\partial t} \phi _k \mathrm {d}x + \widehat{(z_1\rho _1)_hu_h} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{(z_1\rho _1)_hu_h} \phi _k\Big |_{j-\frac{1}{2}} - \int _{I_j} (z_1\rho _1)_h u_h\frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial (z_2\rho _2)_h}{\partial t} \phi _k \mathrm {d}x + \widehat{(z_2\rho _2)_hu_h} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{(z_2\rho _2)_hu_h} \phi _k\Big |_{j-\frac{1}{2}} - \int _{I_j} (z_2\rho _2)_h u_h\frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial \rho u_h}{\partial t} \phi _k \mathrm {d}x + \widehat{(\rho _h u_h^2 + p_h)} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{(\rho _h u_h^2 + p_h)} \phi _k\Big |_{j-\frac{1}{2}} \\&\quad - \int _{I_j} (\rho _h u_h^2+p_h) \frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial E_h}{\partial t} \phi _k \mathrm {d}x + \widehat{u_h(E_h+p_h)} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{u_h(E_h+p_h)} \phi _k\Big |_{j-\frac{1}{2}} \\&\quad - \int _{I_j} u_h(E_h+p_h) \frac{\partial \phi _k}{\partial x}\mathrm {d}x = 0,\\&\int _{I_j} \frac{\partial (z_1)_h}{\partial t} \phi _k \mathrm {d}x + \widehat{u_h(z_1)_h} \phi _k\Big |_{j+\frac{1}{2}} - \widehat{u_h(z_1)_h} \phi _k\Big |_{j-\frac{1}{2}} + \int _{I_j} u_h \frac{\partial (z_1)_h}{\partial x}\phi _k\mathrm {d}x\\&\quad -[(u_h(z_1)_h \phi _k)^-_{j+\frac{1}{2}} - (u_h(z_1)_h \phi _k)^+_{j-\frac{1}{2}}]= 0,\\ \end{aligned} \end{aligned}$$
(79)

We note that the second integration by parts is different from the first integration by parts, as it is performed on the discretized level within the cell \(I_j\), thus, no numerical flux is involved.

Next, we need to further specify the formulations of the numerical flux. For the first four conservative variables, we use the Lax-Friedrichs numerical flux, which is given as

$$\begin{aligned} \widehat{\varvec{F}}(\varvec{u}_{j+\frac{1}{2}}^-,\varvec{u}_{j+\frac{1}{2}}^+) = \frac{1}{2}[\varvec{F}(\varvec{u}_{j+\frac{1}{2}}^+)+\varvec{F}(\varvec{u}_{j+\frac{1}{2}}^-) - S_{j+\frac{1}{2}}(\varvec{u}_{j+\frac{1}{2}}^+ - \varvec{u}_{j+\frac{1}{2}}^-)], \end{aligned}$$
(80)

where \(\varvec{u}=(z_1\rho _1, z_2\rho _2, \rho u, E)^\top \) and \(\varvec{F}(\varvec{u})=(z_1\rho _1u, z_2\rho _2u, \rho u^2+p, u(E+p))^\top \). To further derive the numerical flux for the equation of volume fraction, we consider an isolated interface problem, which contains two components with different densities and volume fractions moving at a uniform velocity and a uniform pressure. We assume that the isolated interface is located at the cell \(I_j\).

After substituting the Lax-Friedrichs numerical flux into the first four discretized equations in Eq. (79), we obtain a discretized equation for the variable \(z_1\) as follows

$$\begin{aligned} \begin{aligned}&\int _{I_j} \frac{\partial (z_1)_h}{\partial t} \phi _k \mathrm {d}x +\frac{1}{2}\left[ u(z_1)_{j+\frac{1}{2}}^+ + u(z_1)_{j+\frac{1}{2}}^- - S_{j+\frac{1}{2}}((z_1)_{j+\frac{1}{2}}^+-(z_1)_{j+\frac{1}{2}}^-)\right] \phi _k|^-_{j+\frac{1}{2}}\\&\quad -\frac{1}{2}\left[ u(z_1)_{j-\frac{1}{2}}^+ + u(z_1)_{j-\frac{1}{2}}^- - S_{j-\frac{1}{2}}((z_1)_{j-\frac{1}{2}}^+-(z_1)_{j-\frac{1}{2}}^-)\right] \phi _k|^+_{j-\frac{1}{2}}\\&\quad -\int _{I_j} u(z_1)_h\frac{\partial \phi _k}{\partial x}\mathrm {d}x= 0. \end{aligned} \end{aligned}$$
(81)

An extra integral by parts is performed locally in the cell \(I_j\) and since u is uniform at time \(t^n\), we obtain

$$\begin{aligned} \begin{aligned}&\int _{I_j} \frac{\partial (z_1)_h}{\partial t} \phi _k \mathrm {d}x +\frac{1}{2}\left[ u(z_1)_{j+\frac{1}{2}}^+ + u(z_1)_{j+\frac{1}{2}}^- - S_{j+\frac{1}{2}}((z_1)_{j+\frac{1}{2}}^+-(z_1)_{j+\frac{1}{2}}^-)\right] \phi _k|^-_{j+\frac{1}{2}}\\&\quad -\frac{1}{2}\left[ u(z_1)_{j-\frac{1}{2}}^+ + u(z_1)_{j-\frac{1}{2}}^- - S_{j-\frac{1}{2}}\left( (z_1)_{j-\frac{1}{2}}^+-(z_1)_{j-\frac{1}{2}}^-\right) \right] \phi _k|^+_{j-\frac{1}{2}}\\&\quad +\int _{I_j} u\frac{\partial (z_1)_h}{\partial x}\phi _k\mathrm {d}x-\left[ (u(z_1)_h\phi _k)^-_{j+\frac{1}{2}} - (u(z_1)_h \phi _k)^+_{j-\frac{1}{2}}\right] = 0. \end{aligned} \end{aligned}$$
(82)

We compare the above spatial discretization for the variable \(z_1\) with the discretization given in Eq. (79), which leads to

$$\begin{aligned} \widehat{u(z_1)}_h \Big |_{j\pm \frac{1}{2}} = \frac{1}{2}\left[ u(z_1)_{j\pm \frac{1}{2}}^+ + u(z_1)_{j\pm \frac{1}{2}}^- - S_{j\pm \frac{1}{2}}\left( (z_1)_{j\pm \frac{1}{2}}^+-(z_1)_{j\pm \frac{1}{2}}^-\right) \right] , \end{aligned}$$
(83)

where the subscript and superscript of u in above formula need to be specified further.

Finally, in order to properly define the velocity, we require that in Eq. (82) the residual of the spatial discretization equals to zero for single fluid flows. This consistent requirement leads to the final numerical flux as follows

$$\begin{aligned}&\widehat{u_h(z_1)_h}\Big |_{j+\frac{1}{2}}\nonumber \\&\quad = {\left\{ \begin{array}{ll} \frac{1}{2}\left[ u_{j+\frac{1}{2}}^-(z_1)_{j+\frac{1}{2}}^++u_{j+\frac{1}{2}}^-(z_1)_{j+\frac{1}{2}}^- - S_{j+\frac{1}{2}}\left( (z_1)_{j+\frac{1}{2}}^+-(z_1)_{j+\frac{1}{2}}^-\right) \right] \quad &{}\text {for}\quad I_j,\\ \frac{1}{2}\left[ u_{j+\frac{1}{2}}^+(z_1)_{j+\frac{1}{2}}^++u_{j+\frac{1}{2}}^+(z_1)_{j+\frac{1}{2}}^- - S_{j+\frac{1}{2}}\left( (z_1)_{j+\frac{1}{2}}^+-(z_1)_{j+\frac{1}{2}}^-\right) \right] \quad &{}\text {for}\quad I_{j+1}.\\ \end{array}\right. } \end{aligned}$$
(84)

The formulation of the numerical flux at \(x=x_{j-\frac{1}{2}}\) is similar, thus, omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Zhang, F. & Liu, T. A Quasi-Conservative Discontinuous Galerkin Method for Solving Five Equation Model of Compressible Two-Medium Flows. J Sci Comput 85, 12 (2020). https://doi.org/10.1007/s10915-020-01319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01319-5

Keywords

Navigation