Skip to main content
Log in

Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The purpose of this paper is the determination of the numerical solution of a classical unilateral stationary elliptic obstacle problem. The numerical technique combines Moreau-Yoshida penalty and spectral finite element approximations. The penalized method transforms the obstacle problem into a family of semilinear partial differential equations. The discretization uses a non-overlapping spectral finite element method with Legendre–Gauss–Lobatto nodal basis using a conforming mesh. The strategy is based on approximating the solution using a spectral finite element method. In addition, by coupling the penalty and the discretization parameters, we prove a priori and a posteriori error estimates where reliability and efficiency of the estimators are shown for Legendre spectral finite element method. Such estimators can be used to construct adaptive methods for obstacle problems. Moreover, numerical results are given to corroborate our error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, New York (2003)

    MATH  Google Scholar 

  2. Baiocchi, C.: Variational and Quasivariational Inequalities. Applications to Free-boundary Problems. Wiley, Chichester (1984)

    MATH  Google Scholar 

  3. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010)

    Book  Google Scholar 

  4. Bernardi, C.: Indicateurs d’erreur en \(h-N\) version des éléments spectraux. ESAIM Math. Modell. Numer. Anal. 30, 1–38 (1996). https://doi.org/10.1051/m2an/1996300100011

    Article  MATH  Google Scholar 

  5. Bernardi, C., Fiétier, N., Owens, R.G.: An error indicator for mortar element solutions to the stokes problem. IMA J. Numer. Anal. 21, 857–886 (2001). https://doi.org/10.1093/imanum/21.4.857

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problèmes aux Limites elliptiques. Springer, Berlin (2004)

    MATH  Google Scholar 

  7. Claudio Canuto, C., Yousuff Hussaini, M., Quarteroni, M.Y., Zang, A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Book  Google Scholar 

  8. Chang, L., Gong, W., Yan, N.: Finite element method for a nonsmooth elliptic equation. Front. Math. China 5(2), 191–209 (2010). https://doi.org/10.1007/s11464-010-0001-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, X.L., Lian, Xue L.: On the error estimate of finite difference method for the obstacle problem. Appl. Math. Comput. 183(1), 416–422 (2006). https://doi.org/10.1016/j.amc.2006.05.082

    Article  MathSciNet  MATH  Google Scholar 

  10. Clément, P.: Approximation by finite element functions using local regularization. Revue française d’automatique, informatique, recherche opérationnelle. Anal. Numér.que. 9(R2), 77–84 (1975). https://doi.org/10.1051/m2an/197509R200771

    Article  Google Scholar 

  11. French, D.A., Larsson, S., Nochetto, R.H.: Pointwise a posteriori error analysis for an adaptive penalty finite element method for the obstacle problem. Comput. Methods Appl. Math. 1(1), 18–38 (2001). https://doi.org/10.2478/cmam-2001-0002

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, A.: Variational Principles and Free-Boundary Problems. Courier Corporation, Chelmsford (2010)

    Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  14. Gong, W., Liu, W., Yan, N.: A posteriori error estimates of hp-FEM for optimal control problems. Int. J. Numer. Anal. Model. (2011). https://doi.org/10.1016/j.amc.2014.03.053

    Article  MathSciNet  MATH  Google Scholar 

  15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, vol. 69. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  16. Guan, Y.: Mathematical justification of an obstacle problem in the case of a plate. Chin. Ann. Math. Ser. B 38(5), 1047–1058 (2017). https://doi.org/10.1007/s11401-017-1021-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Han, J., Yang, Y.: A class of spectral element methods and its a priori/a posteriori error estimates for 2nd-order elliptic eigenvalue problems. Abstract Appl. Anal. (2013). https://doi.org/10.1155/2013/262010

    Article  MathSciNet  MATH  Google Scholar 

  18. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000). https://doi.org/10.1137/S0036142999355921

    Article  MathSciNet  MATH  Google Scholar 

  19. Karatzas, I., Shreve, S.E., Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance, vol. 39. Springer, Berlin (1998)

    Book  Google Scholar 

  20. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and their Applications, vol. 31. SIAM, Philadelphia (1980)

    MATH  Google Scholar 

  21. Lions, J.L.: Quelques Méthodes de Résolution des Problemes Aux Limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  22. Melenk, J.M., Wohlmuth, B.I.: On residual-based a posteriori error estimation in \(hp\)-fem. Adv. Comput. Mathe.matics 15(1–4), 311–331 (2001). https://doi.org/10.1023/A:1014268310921

    Article  MathSciNet  MATH  Google Scholar 

  23. Murea, C.M., Tiba, D.: A direct algorithm in some free boundary problems. J. Numer. Math. 24(4), 253–271 (2016). https://doi.org/10.1515/jnma-2015-0048

  24. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984). https://doi.org/10.1016/0021-9991(84)90128-1

    Article  MATH  Google Scholar 

  25. Rodrigues, J.F.: Obstacle Problems in Mathematical Physics, vol. 134. Elsevier, Amsterdam (1987)

    Book  Google Scholar 

  26. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990). https://doi.org/10.1090/S0025-5718-1990-1011446-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Weiss, A., Wohlmuth, B.I.: A posteriori error estimator for obstacle problems. SIAM J. Sci. Comput. 32(5), 2627–2658 (2010). https://doi.org/10.1137/090773921

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, W., Xu, C.: A posteriori error estimation of spectral and spectral element methods for the Stokes/Darcy coupled problem. J. Math. Study 47(1), 85–110 (2014). https://doi.org/10.4208/jms.v47n1.14.05

    Article  MathSciNet  MATH  Google Scholar 

  29. Zeng, Y., Chen, J., Wang, F.: Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities. Comput. Math. Appl. 69(8), 760–770 (2015). https://doi.org/10.1016/j.camwa.2015.02.022

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, T., Tang, L.: Finite volume method for the variational inequalities of first and second kinds. Math. Methods Appl. Sci. 38(17), 3980–3989 (2015). https://doi.org/10.1002/mma.333

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radouen Ghanem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djeridi, B., Ghanem, R. & Sissaoui, H. Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem. J Sci Comput 85, 54 (2020). https://doi.org/10.1007/s10915-020-01355-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01355-1

Keywords

Mathematics Subject Classification

Navigation