Skip to main content
Log in

Error Analysis of Euler Semi-implicit Scheme for the Nonstationary Magneto-hydrodynamics Problem with Temperature Dependent Parameters

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article we consider a fully discrete Euler semi-implicit scheme for the nonstationary electromagnetically and thermally driven flow, which is describing the motion of a nonisothermal incompressible magneto-hydrodyna-mics fluid subject to generalized Boussinesq problem with temperature dependent parameters. A prototypical time-stepping scheme, which is comprised of the Euler semi-implicit discretization in time and conforming mixed finite element approximation in space is studied in detail. We obtain that the proposed scheme is unconditionally stable and derive some optimal error estimates for the fluid velocity, the fluid magnetic and the fluid temperature. Moreover, a suboptimal error estimate for the fluid pressure is proved. Numerical results are provided to verify the theoretical rates of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bermudez, A., Munoz-Sola, R., Vazquez, R.: Analysis of two stationary magneto-hydrodynamic systems of equations including Joule heating. J. Math. Anal. Appl. 368, 444–468 (2010)

    Article  MathSciNet  Google Scholar 

  2. Cimatti, G.: A plane problem of incompressible magneto-hydrodynamics with viscosity and resistivity depending on the temperature. Rend. Mat. Acc. Lincei 15, 137–146 (2004)

    MATH  Google Scholar 

  3. Davis, T.A.: Algorithm 832: UMFPACK V4.3-an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MathSciNet  Google Scholar 

  4. Davidson, P.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  5. Farhloul, M., Zine, A.: A dual mixed formulation for non-isothermal Oldroyd–Stokes problem. Math. Model. Nat. Phenom. 6, 130–156 (2011)

    Article  MathSciNet  Google Scholar 

  6. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations, Series in Computational Mathematics. Springer, New York (1986)

    Book  Google Scholar 

  7. Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comput. 56, 523–563 (1991)

    Article  MathSciNet  Google Scholar 

  8. Getling, A.V.: Rayleigh–Benard Convection: Structures and Dynamics. World Scientific, Singapore (1998)

    Book  Google Scholar 

  9. Gerbeau, J.F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    Article  MathSciNet  Google Scholar 

  10. Gerbeau, J.F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  11. Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 199, 2840–2855 (2010)

    Article  MathSciNet  Google Scholar 

  12. Heister, T., Mohebujjaman, M., Rebholz, L.G.: Decoupled, Unconditionally stable, higher order discretizations for MHD flow simulation. J. Sci. Comput. 71, 21–43 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  14. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kim, S., Lee, E.B., Choi, W.: Newton’s algorithm for magnetohydrodynamic equations with the initial guess from Stokes-like problem. J. Comput. Appl. Math. 309, 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  16. Lorca, S.A., Boldrini, J.L.: Stationary solutions for generalized Boussinesq models. J. Differ. Equ. 124, 389–406 (1996)

    Article  MathSciNet  Google Scholar 

  17. Layton, W., Tran, W., Trenchea, H.: Stability of partitioned methods for magnetohydrodynamics flows at small magnetic Reynolds number. Contemp. Math. 586, 231–238 (2013)

    Article  MathSciNet  Google Scholar 

  18. Moreau, R.: Magneto-Hydrodynamics. Kluwer Academic Publishers, Dordrecht (1990)

    Book  Google Scholar 

  19. Meir, A.J.: Thermally coupled, stationary, incompressible MHD flow, existence, uniqueness, and finite element approximation. Numer. Methods Partial Differ. Equ. 11, 311–337 (1995)

    Article  MathSciNet  Google Scholar 

  20. Meir, A.J., Schmidt, P.G.: Analysis and numerical approximation of a stationary MHD flow problem with nonideal boundary. SIAM J. Numer. Anal. 36, 1304–1332 (1999)

    Article  MathSciNet  Google Scholar 

  21. Oyarźua, R., Qin, T., Schötzau, D.: An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34, 1104–1135 (2014)

    Article  MathSciNet  Google Scholar 

  22. Priest, E.R., Hood, A.W.: Advances in Solar System Magnetohydrodynamics. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  23. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamic system. Math. Model. Numer. Anal. 42, 1065–1087 (2008)

    Article  MathSciNet  Google Scholar 

  24. Ravindran, S.S.: Partitioned time-stepping scheme for an MHD system with temperature-dependent coefficients. IMA J. Numer. Anal. 39, 1860–1887 (2018)

    Article  MathSciNet  Google Scholar 

  25. Temam, R.: Navier–Stokes Equations, Theory and Numerical, 3rd edn. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  26. Tabata, M., Tagami, D.: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100, 351–372 (2005)

    Article  MathSciNet  Google Scholar 

  27. Tone, F.: On the long-time \(H^2\)-stability of the implicit Euler scheme for the 2D magnetohydrodynamics equations. J. Sci. Comput. 38, 331–348 (2009)

    Article  MathSciNet  Google Scholar 

  28. Wiedmer, M.: Finite element approximation for equations of magnetohydrodynamics. Math. Comp. 69, 83–101 (2000)

    Article  MathSciNet  Google Scholar 

  29. Wang, D.: Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J. Appl. Math. 63, 1424–1441 (2003)

    Article  MathSciNet  Google Scholar 

  30. Yuksel, G., Ingram, R.: Numerical analysis of a finite element, Crank–Nicolson discretization for MHD flow at small magnetic Reynolds number. Int. J. Numer. Anal. Model. 10, 74–98 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Yuksel, G., Isik, O.R.: Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows. Appl. Math. Model. 39, 1889–1898 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Natural Science Foundation of China (No. 11701498) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJB120014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H. Error Analysis of Euler Semi-implicit Scheme for the Nonstationary Magneto-hydrodynamics Problem with Temperature Dependent Parameters. J Sci Comput 85, 47 (2020). https://doi.org/10.1007/s10915-020-01357-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01357-z

Keywords

Mathematics Subject Classification

Navigation