Skip to main content
Log in

Piecewise Fractional Interpolation with Application to Fractional Differential Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new family of interpolants, called piecewise fractional interpolants (PFIs). The proposed interpolants are used to construct a new class of predictor–corrector methods for solving nonlinear fractional differential equations (FDEs). To construct the PFIs, it is essential to know the regularity behavior of the exact solution of an FDE. To do so, we present a pre-algorithm to provide the singular indexes of the exact solution at the initial time. Also, an error analysis with a rigorous proof of the convergence order of the proposed method is given. Some numerical examples are carried out to support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdelhakim, A.A.: The flaw in the conformable calculus: it is conformable because it is not fractional. Fract. Calc. Appl. Anal. 22, 242–254 (2019)

    Article  MathSciNet  Google Scholar 

  2. Arikoglu, A., Ozkol, I.: Solution of fractional differential equations by using differential transform method. Chaos Solitons Fract. 34, 1473–1481 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bouchaud, JPh, Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  Google Scholar 

  5. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MathSciNet  Google Scholar 

  6. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  Google Scholar 

  7. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithm 36, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  8. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. Siam J. Numer. Anal. 45, 572–591 (2007)

    Article  MathSciNet  Google Scholar 

  9. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  11. Li, Ch., Tao, Ch.: On the fractional Adams method. Comput. Math. Appl. 58, 1573–1588 (2009)

    Article  MathSciNet  Google Scholar 

  12. Li, Ch., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  Google Scholar 

  13. Li, Zh, Yan, Y., Ford, N.J.: Error estimates of a high order numerical method for solving linear fractional differential equations. Appl. Numer. Math. 114, 201–220 (2017)

    Article  MathSciNet  Google Scholar 

  14. Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)

    Article  MathSciNet  Google Scholar 

  15. Oldham, K.B., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    MATH  Google Scholar 

  16. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  17. Povstenko, Y.: Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dyn. 59, 593–605 (2010)

    Article  Google Scholar 

  18. Shawagfeh, N.T.: Analytical approximate solutions for nonlinear fractional differential equations. Appl. Math. Comput. 131, 517–529 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, 1554–1562 (2016)

    Article  MathSciNet  Google Scholar 

  20. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. Siam J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  21. Sugiura, H., Hasegawa, T.: Quadrature rule for Abel’s equations: uniformly approximating fractional derivatives. J. Comput. Appl. Math. 223, 459–468 (2009)

    Article  MathSciNet  Google Scholar 

  22. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  Google Scholar 

  23. Yarmohammadi, M., Javadi, S., Babolian, E.: Spectral iterative method and convergence analysis for solving nonlinear fractional differential equation. J. Comput. Phys. 359, 436–450 (2018)

    Article  MathSciNet  Google Scholar 

  24. Zhang, Y.N., Sun, Z.Z., Liao, H.L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahnam Javadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmohammadi, M., Javadi, S. Piecewise Fractional Interpolation with Application to Fractional Differential Equation. J Sci Comput 86, 18 (2021). https://doi.org/10.1007/s10915-020-01373-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01373-z

Keywords

Mathematics Subject Classification

Navigation