Skip to main content
Log in

The Role of Boundary Conditions on Convergence Properties of Peridynamic Model for Transient Heat Transfer

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Normally, peridynamic (PD) models for transient heat transfer converge, in the limit of the horizon size going to zero, to the solution of the corresponding PDE-based heat transfer. However, different ways of imposing local boundary conditions have been observed to lead to some interesting properties that may deliver the classical solution at a point in space and time from a series of PD solutions obtained with relatively large horizons. Here, we use analytical derivation of PD solutions to explain how approximations introduced by the one-point Gaussian discretization in space (the so-called “meshfree” PD method) and by specific implementations of boundary conditions lead to the intersection of m-convergence curves at the exact value of the corresponding classical model solution. This leads to a strategy of approximating the local solution better with a sequence of PD models that use relatively large horizons compared to a PD model that uses a small horizon. We analyze this property for transient heat conduction in homogeneous and heterogeneous bars. We find that material interfaces influence the intersection of m-convergence curves for transient heat conduction in a 1D heterogeneous bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Luciani, J.F., Mora, P., Virmont, J.: Nonlocal heat-transport due to steep temperature-gradients. Phys. Rev. Lett. 51(18), 1664–1667 (1983)

    Article  Google Scholar 

  2. Mahan, G.D., Claro, F.: Nonlocal theory of thermal-conductivity. Phys. Rev. B 38(3), 1963–1969 (1988)

    Article  Google Scholar 

  3. Sobolev, S.L.: Equations of transfer in nonlocal media. Int. J. Heat Mass Transfer 37(14), 2175–2182 (1994)

    Article  Google Scholar 

  4. Grmela, M., Lebon, G.: Finite-speed propagation of heat: a nonlocal and nonlinear approach. Phys. A 248(3–4), 428–441 (1998)

    Article  Google Scholar 

  5. Chen, G.: Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transfer 124(2), 320–328 (2002)

    Article  Google Scholar 

  6. Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Appl. Phys. Lett. 90(8), 083109 (2007)

    Article  Google Scholar 

  7. Tzou, D.Y., Guo, Z.Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49(7), 1133–1137 (2010)

    Article  Google Scholar 

  8. Yu, Y.J., Tian, X.G., Xiong, Q.L.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A Solids. 60, 238–253 (2016)

    Article  MathSciNet  Google Scholar 

  9. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids. 48(1), 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  10. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elasticity 88(2), 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  11. Cheng, Z.Q., Fu, Z.Q., Zhang, Y., Wu, H.X.: A peridynamic model for analyzing fracture behavior of functionally graded materials used as an interlayer. Acta Mech. Solida Sin. 33, 781–792 (2020)

    Article  Google Scholar 

  12. Gerstle, W., Silling, S., Read, D., Tewary, V., Lehoucq, R.: Peridynamic simulation of electromigration. Comput. Mater. Con. 8(2), 75–92 (2008)

    Google Scholar 

  13. Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transfer 53(19–20), 4047–4059 (2010)

    Article  Google Scholar 

  14. Bobaru, F., Duangpanya, M.: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 231(7), 2764–2785 (2012)

    Article  MathSciNet  Google Scholar 

  15. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  16. Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51(6), 3458–3482 (2013)

    Article  MathSciNet  Google Scholar 

  17. Wang, L.J., Xu, J.F., Wang, J.X.: A peridynamic framework and simulation of non-fourier and nonlocal heat conduction. Int. J. Heat Mass Transfer 118, 1284–1292 (2018)

    Article  Google Scholar 

  18. Oterkus, S., Madenci, E., Agwai, A.: Fully coupled peridynamic thermomechanics. J. Mech. Phys. Solids. 64, 1–23 (2014)

    Article  MathSciNet  Google Scholar 

  19. Chen, Z.G., Bobaru, F.: Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput. Phys. Commun. 197, 51–60 (2015)

    Article  Google Scholar 

  20. Chen, Z.G., Bakenhus, D., Bobaru, F.: A constructive peridynamic kernel for elasticity. Comput. Methods Appl. Mech. Eng. 311, 356–373 (2016)

    Article  MathSciNet  Google Scholar 

  21. Hu, W.K., Wang, Y.N., Yu, J., Yen, C.F., Bobaru, F.: Impact damage on a thin glass plate with a thin polycarbonate backing. Int. J. Impact Eng. 62, 152–165 (2013)

    Article  Google Scholar 

  22. Chen, Z., Peng, X., Jafarzadeh, S., Bobaru, F.: Analytical solutions of peridynamic equations. Part I: transient heat diffusion. (In preparation)

  23. Evans, L.C.: Partial differential equations. American Mathematical Society, Rhode Island (2010)

    MATH  Google Scholar 

  24. Rosenau, P.: Tempered diffusion: a transport process with propagating fronts and inertial delay. Phys. Rev. A 46(12), R7371 (1992)

    Article  Google Scholar 

  25. Andreu, F., Caselles, V., Mazon, J.M., Moll, S.: Finite propagation speed for limited flux diffusion equations. Arch. Ration. Mech. Anal. 182(2), 269–297 (2006)

    Article  MathSciNet  Google Scholar 

  26. Bobaru, F., Ha, Y.D.: Adaptive refinement and multiscale modeling in 2D peridynamics. Int. J. Multiscale Comput. Eng. 9(6), 635–659 (2011)

    Article  Google Scholar 

  27. Katiyar, A., Foster, J.T., Ouchi, H., Sharma, M.M.: A peridynamic formulation of pressure driven convective fluid transport in porous media. J. Comput. Phys. 261, 209–229 (2014)

    Article  MathSciNet  Google Scholar 

  28. Oterkus, S., Madenci, E., Agwai, A.: Peridynamic thermal diffusion. J. Comput. Phys. 265, 71–96 (2014)

    Article  MathSciNet  Google Scholar 

  29. Kreyszig, E.: Advanced Engineering Mathematics. John Wiley and Sons, London (2017)

    MATH  Google Scholar 

  30. Li, S.M., Chen, Z.G., Tan, L., Bobaru, F.: Corrosion-induced embrittlement in ZK60A Mg alloy. Mat. Sci. Eng. A Struct. 713, 7–17 (2018)

    Article  Google Scholar 

  31. Henke, S.F., Shanbhag, S.: Mesh sensitivity in peridynamic simulations. Comput. Phys. Commun. 185(1), 181–193 (2014)

    Article  MathSciNet  Google Scholar 

  32. Zhao, J.M., Chen, Z.G., Mehrmashhadi, J., Bobaru, F.: Construction of a peridynamic model for transient advection-diffusion problems. Int. J. Heat Mass Transfer 126, 1253–1266 (2018)

    Article  Google Scholar 

  33. Zhao, J.M., Jafarzadeh, S., Chen, Z., Bobaru, F.: An algorithm for imposing local boundary conditions in peridynamic models of diffusion on arbitrary domains. (under review). https://doi.org/https://doi.org/10.31224/osf.io/7z8qr

  34. Tian, X.C., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52(4), 1641–1665 (2014)

    Article  MathSciNet  Google Scholar 

  35. Le, Q., Bobaru, F.: Surface corrections for peridynamic models in elasticity and fracture. Comput. Mech. 61(4), 499–518 (2018)

    Article  MathSciNet  Google Scholar 

  36. Mehrmashhadi, J., Tang, Y.Y., Zhao, X.L., Xu, Z.P., Pan, J.J., Le, Q.V., Bobaru, F.: The effect of solder joint microstructure on the drop test failure-a peridynamic analysis. IEEE T. Comp. Pack. Man. 9(1), 58–71 (2019)

    Google Scholar 

  37. Capodaglio, G., D’Elia, M., Bochev, P., Gunzburger, M.: An energy-based coupling approach to nonlocal interface problems. Comput. Fluids 207, 104593 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 11802098) and the Natural Science Foundation of Hubei Province (No. 2018CFB111). The work of F.B. and J. Z. was supported by the US National Science Foundation CMMI CDS&E Grant No. 1953346 (program manager Joanne Culbertson). The authors would like to thank the anonymous reviewers for constructive comments and suggestions that have led to significant improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziguang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, T., Zhao, J., Liu, Z. et al. The Role of Boundary Conditions on Convergence Properties of Peridynamic Model for Transient Heat Transfer. J Sci Comput 87, 50 (2021). https://doi.org/10.1007/s10915-021-01469-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01469-0

Keywords

Navigation