Skip to main content
Log in

The High Order Augmented Finite Volume Methods Based on Series Expansion for Nonlinear Degenerate Parabolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Two high order multi-augmented and improved augmented finite volume methods are proposed for solving nonlinear degenerate parabolic problems. The solution is represented as Puiseux series expansion in a subdomain with singularity, but contains undetermined parameters called augmented variables. The equation in regular subdomain is treated with high accuracy numerical methods and the unknown parameters can be solved simultaneously from the corresponding nonlinear system. The outstanding advantages of the proposed methods are that the degeneracy can be depicted by the semi-analytic solution, and we can get high order results globally. Specially, the convergence order for nonlinear degenerate parabolic problems is determined by the numerical schemes on regular subdomain, and the augmented methods have good robustness for solving degenerate or singular problems. Numerical examples for some degenerate parabolic equations confirm the efficiency of the new methods including the second and fourth order schemes. In particular, a two-dimensional singular elliptic equation with corner degeneracy is presented in the numerical experiments to demonstrate that the proposed methods can be extended to higher dimensional degenerate problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abedian, R., Adibi, H., Dehghan, M.: A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput. Phys. Commun. 184(8), 1874–1888 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agueh, M.: Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv Differen. Equa. 10(3), 309–360 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equa. 6(2), 161–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexander, L.: Coupled chemotaxis fluid model. Math. Models Methods Appl. Sci. 20(6), 987–1004 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Arbogast, T., Wheeler, M.F., Zhang, N.Y.: A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Num. Anal. 33(4), 1669–1687 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, W.Z., Cai, Y.Y., Jia, X.W.: Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput. 71, 1094–1134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernis, F., Friedman, A.: Higher order nonlinear degenerate parabolic equations. J. Differen. Equa. 83(1), 179–206 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econom. 81(3), 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z.Q., Kim, S.: A finite element method using singular functions for the Poisson equation: corner singularities. SIAM J. Num. Anal. 39(1), 286–299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, Z.Q., Kim, S., Shin, B.: Solution methods for the Poisson equation with corner singularities: Numerical results. SIAM J. Sci. Comput. 23(2), 672–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Campagna, R., Cuomo, S., De Marchi, S., Perracchione, E., Severino, G.: A stable meshfree PDE solver for source-type flows in porous media. Appl. Num. Math. 149, 30–42 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations. Adv Differen. Equa. 10(10), 153–190 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series, 2. J. Complexity 3, 1–25 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: A simplified approach. J. Financ. Econom. 7(3), 229–263 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cui, H.Y., Li, Y.R.: Existence and upper semicontinuity of random attractors for stochastic degenerate parabolic equations with multiplicative noises. Appl. Math. Comput. 271, 777–789 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Dinmohammadi, A., Razani, A., Shivanian, E.: Analytical solution to the nonlinear singular boundary value problem arising in biology. Bound. Value Prob. 2017(1), 63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Q., Yang, J.: Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications. J. Comput. Phys. 332, 118–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, R.M., Wang, C.P.: Null controllability of a class of systems governed by coupled degenerate equations. Appl. Math. Lett. 26(1), 113–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fabrie, P., Gallouët, T.: Modeling wells in porous media flows. Math. Models Methods Appl. Sci. 10(5), 673–709 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feireisl, E., Simondon, F.: Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dyn. Differen. Equa. 12(3), 647–673 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, H., Li, L.F., Liu, Z.Y.: Stability of degenerate heat equation in non-cylindrical/cylindrical domain. Zeitschrift für Angewandte Mathematik und Physik 70(4), 120–136 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gustafsson, B.: A numerical method for solving singular boundary value problems. Numerische Mathematik 21(4), 328–344 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hook, J., Tisseur, F.: Incomplete LU preconditioner based on max-plus approximation of LU factorization. SIAM J. Matrix Anal. Appl. 38, 1160–1189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibrahim, M., Saad, M.: Weighted weak formulation for a nonlinear degenerate parabolic equation arising in chemotaxis or porous media. J. Math. Anal. Appl 446(1), 945–969 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, C.C., Zhang, X.L.: Global weak solutions to a higher order nonlinear degenerate parabolic equation. J. Math Anal. Appl. 462, 1435–1463 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y.Y., Shu, C.W., Zhang, M.P.: A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media. SIAM J. Sci. Comput. 33(2), 939–965 (2011)

    Article  MathSciNet  Google Scholar 

  27. Martinez, P., Vancostenoble, J.: Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equa. 6(2), 325–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matos, J.C., Matos, J.A., Rodrigues, M.J., Vasconcelos, P.B.: Approximating the solution of integro-differential problems via the spectral Tau method with filtering. Appl. Num. Math. 149, 164–175 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mizutani, A., Saito, N., Suzuki, T.: Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory. Saim-Math. Model. Num. 39(4), 755–780 (2005)

  30. Murota, K.: Computing Puiseux-series solutions to determinantal equations via combinatorial relaxation. SIAM Journal on Computing 19, 1132–1161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nochetto, R.H., Verdi, C.: Approximation of degenerate parabolic problems using numerical integration. SIAM J. Num. Anal. 25(4), 784–814 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. North, G.R., Howard, L., Pollard, D., Wielicki, B.: Variational formulation of Budyko-Sellers climate models. J. Atmos. Sci. 36(2), 255–259 (1979)

    Article  Google Scholar 

  33. Occorsio, D., Russo, M.G.: A mixed scheme of product integration rules in \((-1,1)\). Appl. Num. Math. 149, 113–123 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and applications. J. Sym.c Comput. 47(1), 32–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Punzo, F.: Integral conditions for uniqueness of solutions to degenerate parabolic equations. J. Differen. Equa. 267(11), 6555–6573 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roberts, J.A., Kavallaris, N.I., Rowntree, A.P.: A discrete mutualism model: Analysis and exploration of a financial application. Appl. Num. Math. 149, 141–152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schimperna, G., Pawlow, I.: On a class of Cahn-Hilliard models with nonlinear diffusion. SIAM J. Math. Anal. 45(1), 31–63 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J., Wang, Y.W.: Müntz-galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems. SIAM J. Sci. Comput. 38, 2357–2381 (2016)

    Article  MathSciNet  Google Scholar 

  39. Sidi, A.: Euler-Maclaurin expansions for integrals with endpoint singularities: a new perspective. Numer. Math. 98(2), 371–387 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sidi, A.: Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities. Math. Comput. 81(280), 2159–2173 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Singh, R., Kumar, J., Nelakant, G.: Numerical solution of singular boundary value problems using Green’s function and improved decomposition method. J. Appl. Math. Comput. 43(1–2), 409–425 (2013)

    Article  MathSciNet  Google Scholar 

  42. Szczechla, W.W., Connell, S.A., Filar, J.A., Vrieze, O.J.: On the Puiseux series expansion of the limit discount equation of stochastic games. SIAM J. Control Optim. 35, 860–875 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vázquez, J.L.: The porous medium equation. Clarendon (2007)

  44. Wang, C.P.: Approximate controllability of a class of degenerate systems. Appl. Math. Comput. 203(1), 447–456 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Wang, C.P.: Asymptotic behavior of solutions to a class of semilinear parabolic equations with boundary degeneracy. Proc. Am. Math. Soc. 141(9), 3125–3140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, T.K., Gu, Y.S., Zhang, Z.Y.: An algorithm for the inversion of Laplace transforms using Puiseux expansions. Num. Algorithm 78(1), 107–132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, T.K., Liu, Z.F., Zhang, Z.Y.: The modified composite Gauss type rules for singular integrals using Puiseux expansions. Math. Comput. 86(303), 345–373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, T.K., Zhang, Z.Y.: A compact finite volume method and its extrapolation for elliptic equations with third boundary conditions. Appl. Math. Comput. 264, 258–271 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Wu, D., Yue, J.Y., Yuan, G.W., Lv, J.L.: Finite volume element approximation for nonlinear diffusion problems with degenerate diffusion coefficients. Appl. Num. Math. 140, 23–47 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhai, J.Y., Zhang, Z.Y., Wang, T.K.: Fractional Hermite interpolation for non-smooth functions. Electron. Trans. Num. Anal. 52(1), 113–131 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhao, T.J., Ito, K., Zhang, Z.Y.: Semi-decoupling hybrid asymptotic and augmented finite volume method for nonlinear singular interface problems. J. Comput. Appl. Math. 113606, (2021)

  52. Zhao, T.J., Zhang, Z.Y., Wang, T.K.: A hybrid asymptotic and augmented compact finite volume method for nonlinear singular two point boundary value problems. Appl. Math. Comput. 392, 125745 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Zhou, M.J., Wang, C.P., Nie, Y.Y.: Quenching of solutions to a class of semilinear parabolic equations with boundary degeneracy. J. Math. Anal. Appl. 421(1), 59–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China(grants No. 11971241). The authors would like to thank anonymous referees for their useful comments and suggestions which have helped to improve the paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The derivation of the Equivalent Fredholm Integral Equation in Section 2.1:

Equation (1.1) is equivalent to the following equation

$$\begin{aligned} x^\alpha u_x)_x=u_t-f(x,t,u), (x,t)\in (0,b)\times (0,T], 0\le \alpha <1. \end{aligned}$$
(A.1)

Integrating (A.1) over [xb], we obtain

$$\begin{aligned} b^\alpha u_x(b,t)-x^\alpha u_x(x,t)=\int _x^b \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] dx, \end{aligned}$$
(A.2)

which can also be written as

$$\begin{aligned} u_x(x,t)=x^{-\alpha }b^\alpha u_x(b,t)-x^{-\alpha }\int _x^b \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] dx. \end{aligned}$$
(A.3)

Integrating (A.3) over [0, x], we can obtain that

$$\begin{aligned} u(x,t)-u(0,t)=\frac{x^{1-\alpha }}{1-\alpha }b^\alpha u_x(b,t)-\int _0^x \eta ^{-\alpha }\int _\eta ^b \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi d\eta . \end{aligned}$$
(A.4)

The integral domain in (A.4) is \(D=\{(\eta ,\xi )\mid 0\le \eta \le x, \eta \le \xi \le b\}\). If we change the sequence of integral, the integral domain is \(D=\{(\eta ,\xi )\mid 0\le \eta \le \xi , 0\le \xi \le x\} \bigcup \{(\eta ,\xi )\mid 0\le \eta \le x, x\le \xi \le b\}\). So

$$\begin{aligned} \begin{aligned}&\int _0^x \eta ^{-\alpha }\int _\eta ^b \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi d\eta \\&\quad =\int _0^x \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi \int _0^\xi \eta ^{-\alpha } d\eta \\&\quad \quad +\int _x^b \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi \int _0^x\eta ^{-\alpha }d\eta \\&\quad =\int _0^x \frac{\xi ^{1-\alpha }}{1-\alpha }\left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi \\&\quad \quad +\int _x^b\frac{x^{1-\alpha }}{1-\alpha }\left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi . \end{aligned} \end{aligned}$$
(A.5)

Substituting (A.5) into (A.4), and using the boundary condition(1.3), we have

$$\begin{aligned} \begin{aligned}&u(x,t)-g_1(t) \\&\quad =\frac{x^{1-\alpha }}{1-\alpha }b^\alpha u_x(b,t)-\int _0^x \frac{\xi ^{1-\alpha }}{1-\alpha }\left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi \\&\quad \quad -\int _x^b\frac{x^{1-\alpha }}{1-\alpha }\left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi . \end{aligned} \end{aligned}$$
(A.6)

Set \(x=b\) in (A.6) yields

$$\begin{aligned} u(b,t)-g_1(t)=\frac{b}{1-\alpha }u_x(b,t)-\int _0^b \frac{\xi ^{1-\alpha }}{1-\alpha }\left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi . \end{aligned}$$
(A.7)

From the boundary condition (1.3), we have

$$\begin{aligned} u(b,t)=g_2(t)-u_x(b,t). \end{aligned}$$
(A.8)

\(u_x(b,t)\) can be solved from (A.7) and (A.8) as follows

$$\begin{aligned} u_x(b,t)=\frac{1-\alpha }{1-\alpha +b}[g_2(t)-g_1(t)]+\frac{1-\alpha }{1-\alpha +b}\int _0^b\frac{\xi ^{1-\alpha }}{1-\alpha } \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi . \end{aligned}$$
(A.9)

Substituting (A.9) into (A.6) yields

$$\begin{aligned} \begin{aligned} u(x,t)=&g_1(t)+\frac{b^\alpha \left[ g_2(t)-g_1(t)\right] }{1-\alpha +b}x^{1-\alpha } \\&+\int _0^x \frac{\xi ^{1-\alpha }}{1-\alpha }\left[ \frac{b^\alpha x^{1-\alpha }}{1-\alpha +b}-1\right] \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi \\&+\int _x^b \frac{x^{1-\alpha }}{1-\alpha }\left[ \frac{b^\alpha \xi ^{1-\alpha }}{1-\alpha +b}-1\right] \left[ u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))\right] d\xi . \end{aligned} \end{aligned}$$
(A.10)

By introducing the Green’s function

$$\begin{aligned} G(x,\xi )=\left\{ \begin{aligned}&\frac{\xi ^{1-\alpha }}{1-\alpha }\bigg [\frac{b^\alpha }{1-\alpha +b}x^{1-\alpha }-1\bigg ],\ 0\le \xi \le x, \\&\frac{x^{1-\alpha }}{1-\alpha }\bigg [\frac{b^\alpha }{1-\alpha +b}\xi ^{1-\alpha }-1\bigg ],\ x\le \xi \le b, \end{aligned} \right. \end{aligned}$$
(A.11)

the solution of the degenerate parabolic equation (1.1)-(1.3) can be written as the following Fredholm integral equation:

$$\begin{aligned} u(x,t)=g_1(t)+\frac{b^\alpha [g_2(t)-g_1(t)]}{1-\alpha +b}x^{1-\alpha }+\int _0^bG(x,\xi )[u_t(\xi ,t)-f(\xi ,t,u(\xi ,t))]d\xi . \end{aligned}$$
(A.12)

The direct method to obtain (2.7)

From (2.3) we can obtain the first order and second order partial derivative of u(xt) with respect to x

$$\begin{aligned}&u_x(x,t)=a_0(t)(1-\alpha )x^{-\alpha }+\sum _{j=1}^\infty a_j(t)\alpha _j x^{\alpha _j-1}, \end{aligned}$$
(B.1)
$$\begin{aligned}&u_{xx}(x,t)=a_0(t)(-\alpha +\alpha ^2)x^{-\alpha -1}+\sum _{j=1}^\infty a_j(t)\alpha _j(\alpha _j-1) x^{\alpha _j-2}. \end{aligned}$$
(B.2)

Equation (1.1) is equivalent to

$$\begin{aligned} x^\alpha u_{xx}+\alpha x^{\alpha -1}u_x=u_t-f(x,t,u). \end{aligned}$$
(B.3)

Inserting (B.1), (B.2) and (2.4) into (B.3) yields

$$\begin{aligned} \sum _{j=1}^\infty a_j(t)\alpha _j(\alpha +\alpha _j-1)x^{\alpha +\alpha _j-2}=\sum _{j=1}^\infty c_j(t)x^{\beta _j}. \end{aligned}$$
(B.4)

Equating the powers and coefficients of the corresponding terms on both sides of (B.4) yields

$$\begin{aligned} \left\{ \begin{aligned}&\alpha +\alpha _j-2=\beta _j, \\&a_j(t)\alpha _j(\alpha +\alpha _j-1)=c_j(t),\ j=1,2,\cdots . \end{aligned} \right. \end{aligned}$$
(B.5)

namely

$$\begin{aligned} \left\{ \begin{aligned}&\alpha _j=2-\alpha +\beta _j, \\&a_j(t)=\frac{c_j(t)}{(\beta _j+1)\alpha _j},\ j=1,2,\cdots . \end{aligned} \right. \end{aligned}$$
(B.6)

So (B.6) is the second and third equation in (2.7).

  As to the first equation in (2.7), we apply the boundary condition (1.3) at \(x=b\) to (2.3) and (B.1), respectively

$$\begin{aligned} \begin{aligned}&u(b,t)=g_1(t)+a_0(t)b^{1-\alpha }+\sum _{j=1}^\infty a_j(t) b^{\alpha _j}, \\&u_x(b,t)=(1-\alpha )a_0(t)b^{-\alpha }+\sum _{j=1}^\infty \alpha _j b^{\alpha _j-1}, \\&u(b,t)+u_x(b,t)=g_2(t). \end{aligned} \end{aligned}$$
(B.7)

And we can obtain the first equation of (2.7) solved from (B.7)

$$\begin{aligned} a_0(t)=\sum _{j=1}^\infty \frac{c_j(t)b^{\beta _j+1}(\alpha -b-\beta _j-2)}{(1-\alpha +b)(\beta _j+1)(2-\alpha +\beta _j)} +\frac{b^\alpha (g_2(t)-g_1(t))}{1-\alpha +b}. \end{aligned}$$
(B.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, T., Zhang, Z. et al. The High Order Augmented Finite Volume Methods Based on Series Expansion for Nonlinear Degenerate Parabolic Equations. J Sci Comput 88, 1 (2021). https://doi.org/10.1007/s10915-021-01519-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01519-7

Keywords

Mathematics Subject Classification

Navigation