Skip to main content
Log in

Low-Speed Modification for the Genuinely Multidimensional Harten, Lax, van Leer and Einfeldt Scheme in Curvilinear Coordinates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The MHLLE (Multidimensional Harten, Lax, van Leer and Einfeldt) scheme, which is a genuinely multidimensional Riemann solver proposed by Balsara, encounters the accuracy problem at low speeds because it is built upon the compressible Euler equations. In order to overcome this problem, asymptotic analysis on the MHLLE scheme is conducted in this study. Based on the asymptotic analysis, a novel multidimensional Riemann solver called MHLLELS (Multidimensional Harten, Lax, van Leer and Einfeldt scheme for Low Speeds) for curvilinear coordinates is proposed. Systematic numerical cases, including 2d inviscid NACA (National Advisory Committee for Aeronautics) 0012 airfoil, Gresho vortex problem, separated flows around a circular cylinder (M = 0.01), turbulent flow over a flat plate, turbulent flow past a NACA0012 airfoil, turbulent flow past a backward facing step, and spherical blast wave, are carried out. Results indicate that the MHLLELS scheme proposed in this study improves the MHLLE scheme’s accuracy at low speeds remarkably, while it is with a high resolution in multidimensional cases. It is promising to be widely used in both scholar and engineering areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)

    Article  MathSciNet  Google Scholar 

  2. Balsara, D.S.: Three dimensional HLL Riemann solver for conservation laws on structured meshes; application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 295, 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  3. Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)

    Article  MathSciNet  Google Scholar 

  4. Balsara, D.S.: Multidimensional Riemann problem with self – similar internal structure. Part II–application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015)

    Article  MathSciNet  Google Scholar 

  5. Vides, J., Nkonga, B., Audit, E.: A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws. J. Comput. Phys. 280, 643–675 (2015)

    Article  MathSciNet  Google Scholar 

  6. Mandal, J.C., Sharma, V.: A genuinely multidimensional convective pressure flux split Riemann solver for Euler equations. J. Comput. Phys. 297, 669–688 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gallardo, J.M., Schneider, K.A., Castro, M.J.: On a class of two-dimensional incomplete Riemann solvers. J. Comput. Phys. 386, 541–567 (2019)

    Article  MathSciNet  Google Scholar 

  8. Qu, F., Sun, D., Bai, J.Q., Yan, C.: A genuinely two-dimensional Riemann solver for compressible flows in curvilinear coordinates. J. Comput. Phys. 386, 47–63 (2019)

    Article  MathSciNet  Google Scholar 

  9. Guillard, H., Viozat, C.: On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28, 63–86 (1999)

    Article  MathSciNet  Google Scholar 

  10. Guillard, H., Murrone, A.: On the behaviour of upwind schemes in the low Mach number limit: II Godunov type schemes. Comput. Fluids 33, 655–675 (2004)

    Article  Google Scholar 

  11. Qu, F., Sun, D., Yan, C.: A new flux splitting scheme for the Euler equations II: E-AUSMPWAS for all speeds. Commun. Nonlinear Sci. Numer. Simul. 57, 58–79 (2018)

    Article  MathSciNet  Google Scholar 

  12. Turkel, E.: Preconditioning technique in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)

    Article  MathSciNet  Google Scholar 

  13. D. Unrau, D. W. Zingg, Viscous airfoil computations using local preconditioning, AIAA Paper 1997–2027, (1997)

  14. Li, X.S., Gu, C.W.: Mechanism of Roe-type schemes for all-speed flows and its application. Comput. Fluids 86, 56–70 (2013)

    Article  MathSciNet  Google Scholar 

  15. Qu, F., Chen, J.J., Sun, D., Bai, J.Q.: A new all-speed flux scheme for the Euler equations. Comput. Math. Appl. 77(4), 1216–1231 (2019)

    Article  MathSciNet  Google Scholar 

  16. Zhou, B.X., Qu, F., Sun, D., Wang, Z.R., Bai, J.Q.: A study of higher-order reconstruction methods for genuinely two-dimensional Riemann solver. J. Comput. Phys. 443, 110469 (2021)

    Article  MathSciNet  Google Scholar 

  17. Qu, F., Sun, D., Bai, J.Q.: A hybrid multidimensional Riemann solver to couple the self-similar method with the MULTV method for complex flows. Chin. J. Aeronaut. 34(7), 29–38 (2021)

    Article  Google Scholar 

  18. Guillard, H., Nkonga, B.: On the behaviour of upwind schemes in the low mach number limit: a review [M]. Handb. Numer. Anal 18, 203–231 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Qu, F., Yan, C., Sun, D., et al.: A new Roe-type scheme for all speeds. Comput. Fluids 121, 11–25 (2015)

    Article  MathSciNet  Google Scholar 

  20. Sun, D., Qu, F., Liu, Q.S., Zhong, J.X.: Improvement of the genuinely multidimensional ME-AUSMPW scheme for subsonic flows. Comput. Math. Appl. 96, 1–15 (2021)

    Article  MathSciNet  Google Scholar 

  21. Yoon, S., Jameson, A.: Low-upper Gauss-Sediel method for the Euler and Navier-Stokes equations. AIAA J. 9, 26 (1988)

    Google Scholar 

  22. Qu, F., Yan, C., Sun, D.: Investigation into the influences of the low speed’s accuracy on the hypersonic heating computations. Int. Commun. Heat Mass Trans. 70, 53–58 (2016)

    Article  Google Scholar 

  23. Gresho, P.M., Chan, S.T.: On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: implementation. Int. J. Numer. Methods Fluids II 11(5), 621–659 (1990)

    Article  Google Scholar 

  24. Inoue, O., Hatakeyama, N.: Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471, 285–314 (2002)

    Article  Google Scholar 

  25. Nguyen, V.B., Do, Q.V., Pham, V.S.: An openfoam solver for multiphase and turbulent flow. Phys. Fluids 32, 043303 (2020)

    Article  Google Scholar 

  26. Mandal, J.C., Arvind, N.: High resolution schemes for genuinely two-dimensional HLLE Riemann solver. Prog. Comput. Fluid Dyn. 14, 205–220 (2014)

    Article  MathSciNet  Google Scholar 

  27. Borges, R., Carmona, M., Costa, B., et al.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  28. Rumsey C., Apparent transition behavior of widely-used turbulence models, AIAA Paper 2006–3906, (2006)

  29. Rumsey, C., Smith, B., and Huang, G., Langley Research Center: Turbulence Modelling Resource, NASA, (2020), http://turbmodels.larc.nasa.gov [retrieved May 2020]

  30. McCroskey, W. J., A critical assessment of wind tunnel results for the NACA 0012 Airfoil, AGARD CP-429, (1988)

  31. Qu, F., Sun, D.: Investigation into the influences of the low-speed flows’ accuracy on RANS simulations. Aerosp. Sci. Technol. 70, 578–589 (2017)

    Article  Google Scholar 

  32. Ladson, C. L., Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 Airfoil Section, NASA TM 4074, (1988)

  33. Driver, D.M., Seegmiller, H.L.: Features of reattaching turbulent shear layer in divergent channel flow. AIAA J. 23(2), 163–171 (1985)

    Article  Google Scholar 

  34. Qu, F., Sun, D., Bai, J.Q.: Self-similar structures based genuinely two-dimensional Riemann solvers in curvilinear coordinates. J. Comput. Phys. 420, 109668 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was co-supported by National Natural Science Foundation of China (Nos. 11972308 and 11902265) and the National Major Basic Research Project 1912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qu.

Ethics declarations

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, F., Sun, D. & Bai, J. Low-Speed Modification for the Genuinely Multidimensional Harten, Lax, van Leer and Einfeldt Scheme in Curvilinear Coordinates. J Sci Comput 88, 61 (2021). https://doi.org/10.1007/s10915-021-01561-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01561-5

Keywords

Navigation