Skip to main content

Advertisement

Log in

Decomposition of Longitudinal Deformations via Beltrami Descriptors

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a mathematical model to decompose a longitudinal deformation into normal and abnormal components. The goal is to detect and extract subtle abnormal deformation from periodic motions in a video sequence. It has important applications in medical image analysis. To achieve this goal, we consider a representation of the longitudinal deformation, called the Beltrami descriptor, based on quasiconformal theories. The Beltrami descriptor is a complex-valued matrix. Each longitudinal deformation is associated to a Beltrami descriptor and vice versa. To decompose the longitudinal deformation, we propose to carry out the low rank and sparse decomposition of the Beltrami descriptor. The low rank component corresponds to the periodic motions, whereas the sparse part corresponds to the abnormal motions of a longitudinal deformation. Experiments have been carried out on both synthetic and real video sequences. Results demonstrate the efficacy of our proposed model to decompose a longitudinal deformation into regular and irregular components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beg, M.F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61, 139–157 (2005). https://doi.org/10.1023/B:VISI.0000043755.93987.aa

    Article  Google Scholar 

  2. Cai, J.F., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion (2008)

  3. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3) (2011). https://doi.org/10.1145/1970392.1970395

  4. Cao, W., Wang, Y., Sun, J., Meng, D., Yang, C., Cichocki, A., Xu, Z.: Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 25(9), 4075–4090 (2016). https://doi.org/10.1109/TIP.2016.2579262

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, H., Li, L., Lui, L.: Quasi-conformal statistical shape analysis of hippocampal surfaces for Alzheimer’s disease analysis. J. Neurocomput. 175(A), 177–187 (2016)

  6. Chan, H.L., Yan, S., Lui, L.M., Tai, X.C.: Topology-preserving image segmentation by Beltrami representation of shapes. J. Math. Imaging Vis. 60(3), 401–421 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chan, H.L., Yuen, H.M., Au, C.T., Chan, K.C.C., Li, A.M., Lui, L.M.: Quasi-conformal geometry based local deformation analysis of lateral cephalogram for childhood OSA classification. arXiv preprint arXiv:2006.11408 (2020)

  8. Choi, G.P., Qiu, D., Lui, L.M.: Shape analysis via inconsistent surface registration. Proc. R. Soc. A 476(2242), 20200147 (2020)

  9. Choi, P., Chan, H., Yong, R., Ranjitkar, S., Brook, A., Townsend, G., Chen, K., Lui, L.: Tooth morphometry using Quasi-conformal theory. Pattern Recognit. 99, 107064 (2020)

  10. Choi, P.T., Lam, K.C., Lui, L.M.: Flash: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imag. Sci. 8(1), 67–94 (2015)

    Article  MathSciNet  Google Scholar 

  11. Ebadi, S.E., Izquierdo, E.: Foreground segmentation with tree-structured sparse RPCA. IEEE Trans. Pattern Anal. Mach. Intell. 40(9), 2273–2280 (2018). https://doi.org/10.1109/TPAMI.2017.2745573

    Article  Google Scholar 

  12. Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems. In: Studies in Mathematics and its Applications, vol. 15, pp. 299–331. Elsevier (1983). https://doi.org/10.1016/S0168-2024(08)70034-1

  13. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). https://doi.org/10.1016/0898-1221(76)90003-1

  14. Gardiner, F., Lakic, N., Society, A.M.: Quasiconformal Teichmuller Theory. Mathematical surveys and monographs. American Mathematical Society (2000). https://books.google.de/books?id=BLfyBwAAQBAJ

  15. Gilmartin, J.J., Gibson, G.J.: Abnormalities of chest wall motion in patients with chronic airflow obstruction. Thorax (1984)

  16. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Scientific Computation. Springer, Berlin (2013). https://books.google.co.uk/books?id=vGrwCAAAQBAJ

  17. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Society for Industrial and Applied Mathematics (1989) https://doi.org/10.1137/1.9781611970838

  18. He, B., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23(3), 151–161 (1998). https://doi.org/10.1016/S0167-6377(98)00044-3

  19. Heaton, J., Yandrapalli, S: Premature atrial contractions. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2021). https://www.ncbi.nlm.nih.gov/books/NBK559204/

  20. Hong, M., Luo, Z.Q.: On the linear convergence of the alternating direction method of multipliers (2012)

  21. Islam, M., Kabir, M.: A new feature-based image registration algorithm. Comput. Technol. Appl. 4, 79–84 (2013)

    Google Scholar 

  22. Javed, S., Oh, S.H., Sobral, A., Bouwmans, T., Jung, S.K.: Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 930–938 (2015). https://doi.org/10.1109/ICCVW.2015.123

  23. Kaplan, J., Donoho, D.: The morphlet transform: a multiscale representation for diffeomorphisms. In: Proceedings of the Workshop on Image Registration in Deformable Environments, pp. 21–30 (2006)

  24. Kumar, A., Chan, T.: Iris recognition using quaternionic sparse orientation code (qsoc). In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 59–64 (2012). https://doi.org/10.1109/CVPRW.2012.6239216

  25. Lam, K., Ng, T., Lui, L.: Multiscale representation of deformation via Beltrami coefficients. SIAM J. Multiscale Model. Simul. 15(2), 864–891 (2017)

    Article  MathSciNet  Google Scholar 

  26. Lam, K.C., Lui, L.M.: Landmark- and Intensity-based registration with large deformations via Quasi-conformal maps. SIAM J. Imag. Sci. 7(4), 2364–2392 (2014). https://doi.org/10.1137/130943406

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, Y.T., Lam, K.C., Lui, L.M.: Landmark-matching transformation with large deformation via n-dimensional quasi-conformal maps. J. Sci. Comput. 67(3), 926–954 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lehto, O., Virtanen, K.: Quasiconformal mappings in the plane (2011)

  29. Li, Y., Liu, G., Liu, Q., Sun, Y., Chen, S.: Moving object detection via segmentation and saliency constrained rpca. Neurocomputing 323, 352–362 (2019) https://doi.org/10.1016/j.neucom.2018.10.012

  30. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Math. Program. 9 (2010)

  31. Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In: International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Aruba, Dutch Antilles (2009)

  32. Lui, L., Wong, T., Gu, X., Thompson, P., Chan, T., Yau, S.: Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow. In: Medical Image Computing and Computer Assisted Intervention(MICCAI), art II, LNCS 6362 pp. 323–330 (2010)

  33. Lui, L., Wong, T., Zeng, W., Gu, X., Thompson, P., Chan, T., Yau, S.: Detection of shape deformities using Yamabe flow and Beltrami coefficients. J. Inverse Problem Imaging 4(2), 311–333 (2010)

    Article  MathSciNet  Google Scholar 

  34. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using Beltrami representation. SIAM J. Imag. Sci. 6(4), 1880–1902 (2013)

    Article  MathSciNet  Google Scholar 

  35. Lui, L.M., Lam, K.C., Yau, S.T., Gu, X.: Teichmuller mapping (t-map) and its applications to landmark matching registration. SIAM J. Imag. Sci. 7(1), 391–426 (2014)

    Article  MathSciNet  Google Scholar 

  36. Lui, L.M., Thiruvenkadam, S., Wang, Y., Thompson, P.M., Chan, T.F.: Optimized conformal surface registration with shape-based landmark matching. SIAM J. Imag. Sci. 3(1), 52–78 (2010)

    Article  MathSciNet  Google Scholar 

  37. Lui, L.M., Wen, C.: Geometric registration of high-genus surfaces. SIAM J. Imag. Sci. 7(1), 337–365 (2014)

    Article  MathSciNet  Google Scholar 

  38. Lui, L.M., Wong, T.W., Zeng, W., Gu, X., Thompson, P.M., Chan, T.F., Yau, S.T.: Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput. 50(3), 557–585 (2012)

    Article  MathSciNet  Google Scholar 

  39. Lui, L.M., Zeng, W., Yau, S.T., Gu, X.: Shape analysis of planar multiply-connected objects using conformal welding. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1384–1401 (2013)

    Google Scholar 

  40. Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization (2009)

  41. Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 450–462 (2013). https://doi.org/10.1109/TPAMI.2012.97

    Article  Google Scholar 

  42. Peng, L., Huang, Z.Y., Jia, Y.Y.: Application of the combinatorial model of wavelet analysis and support vector machines in deformation analysis. In: Proceedings of the 2nd International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), pp. 1–4 (2012)

  43. Qiu, D., Lui, L.M.: Inconsistent surface registration via optimization of mapping distortions. J. Sci. Comput. 83(3), 1–31 (2020)

    Article  MathSciNet  Google Scholar 

  44. Sobral, A., Bouwmans, T., ZahZah, E.: Double-constrained rpca based on saliency maps for foreground detection in automated maritime surveillance. In: 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2015). https://doi.org/10.1109/AVSS.2015.7301753

  45. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013). https://doi.org/10.1109/TMI.2013.2265603

    Article  Google Scholar 

  46. Taimouri, V., Hua, J.: Deformation similarity measurement in quasi-conformal shape space. Graph. Models 76, 57–69 (2014)

    Article  Google Scholar 

  47. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996). http://www.jstor.org/stable/2346178

  48. Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Trans. Graphics (TOG) 22, 445–452 (2003)

    Article  Google Scholar 

  49. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1, Supplement 1), S61 – S72 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.040

  50. Wang, Y., Lui, L.M., Gu, X., Hayashi, K.M., Chan, T.F., Toga, A.W., Thompson, P.M., Yau, S.T.: Brain surface conformal parameterization using Riemann surface structure. IEEE Trans. Med. Imaging 26(6), 853–865 (2007)

    Article  Google Scholar 

  51. Yao, J.: Image registration based on both feature and intensity matching. In: 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), vol. 3, pp. 1693–1696 (2001)

  52. Yasein, M.S., Agathoklis, P.: A feature-based image registration technique for images of different scale. In: 2008 IEEE International Symposium on Circuits and Systems, pp. 3558–3561 (2008)

  53. Ye, C.H., Yuan, X.M.: A descent method for structured monotone variational inequalities. Optim. Methods Softw. 22(2), 329–338 (2007). https://doi.org/10.1080/10556780600552693

    Article  MathSciNet  MATH  Google Scholar 

  54. Yuan, X., Yang, J.: Sparse and low rank matrix decomposition via alternating direction method. Pac. J. Optim. 9 (2009)

  55. Zeng, W., Lui, L.M., Shi, L., Wang, D., Chu, W.C., Cheng, J.C., Hua, J., Yau, S.T., Gu, X.: Shape analysis of vestibular systems in adolescent idiopathic scoliosis using geodesic spectra. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 538–546. Springer (2010)

  56. Zhou, T., Tao, D.: Godec: randomized lowrank and sparse matrix decomposition in noisy case. pp. 33–40 (2011)

  57. Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 597–610 (2013). https://doi.org/10.1109/TPAMI.2012.132

    Article  Google Scholar 

  58. Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003). https://doi.org/10.1016/S0262-8856(03)00137-9

Download references

Acknowledgements

L.M. Lui is supported by HKRGC GRF (Project ID: 2130549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Ming LUI.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

HKRGC GRF (Project ID:2130549, Reference ID: 14306917), CUHK Direct Grant (Project ID: 4053292).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Law, H., Siu, C.Y. & LUI, L.M. Decomposition of Longitudinal Deformations via Beltrami Descriptors. J Sci Comput 89, 6 (2021). https://doi.org/10.1007/s10915-021-01569-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01569-x

Keywords