Abstract
We present a mathematical model to decompose a longitudinal deformation into normal and abnormal components. The goal is to detect and extract subtle abnormal deformation from periodic motions in a video sequence. It has important applications in medical image analysis. To achieve this goal, we consider a representation of the longitudinal deformation, called the Beltrami descriptor, based on quasiconformal theories. The Beltrami descriptor is a complex-valued matrix. Each longitudinal deformation is associated to a Beltrami descriptor and vice versa. To decompose the longitudinal deformation, we propose to carry out the low rank and sparse decomposition of the Beltrami descriptor. The low rank component corresponds to the periodic motions, whereas the sparse part corresponds to the abnormal motions of a longitudinal deformation. Experiments have been carried out on both synthetic and real video sequences. Results demonstrate the efficacy of our proposed model to decompose a longitudinal deformation into regular and irregular components.






Similar content being viewed by others
References
Beg, M.F., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61, 139–157 (2005). https://doi.org/10.1023/B:VISI.0000043755.93987.aa
Cai, J.F., Candes, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion (2008)
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3) (2011). https://doi.org/10.1145/1970392.1970395
Cao, W., Wang, Y., Sun, J., Meng, D., Yang, C., Cichocki, A., Xu, Z.: Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 25(9), 4075–4090 (2016). https://doi.org/10.1109/TIP.2016.2579262
Chan, H., Li, L., Lui, L.: Quasi-conformal statistical shape analysis of hippocampal surfaces for Alzheimer’s disease analysis. J. Neurocomput. 175(A), 177–187 (2016)
Chan, H.L., Yan, S., Lui, L.M., Tai, X.C.: Topology-preserving image segmentation by Beltrami representation of shapes. J. Math. Imaging Vis. 60(3), 401–421 (2018)
Chan, H.L., Yuen, H.M., Au, C.T., Chan, K.C.C., Li, A.M., Lui, L.M.: Quasi-conformal geometry based local deformation analysis of lateral cephalogram for childhood OSA classification. arXiv preprint arXiv:2006.11408 (2020)
Choi, G.P., Qiu, D., Lui, L.M.: Shape analysis via inconsistent surface registration. Proc. R. Soc. A 476(2242), 20200147 (2020)
Choi, P., Chan, H., Yong, R., Ranjitkar, S., Brook, A., Townsend, G., Chen, K., Lui, L.: Tooth morphometry using Quasi-conformal theory. Pattern Recognit. 99, 107064 (2020)
Choi, P.T., Lam, K.C., Lui, L.M.: Flash: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imag. Sci. 8(1), 67–94 (2015)
Ebadi, S.E., Izquierdo, E.: Foreground segmentation with tree-structured sparse RPCA. IEEE Trans. Pattern Anal. Mach. Intell. 40(9), 2273–2280 (2018). https://doi.org/10.1109/TPAMI.2017.2745573
Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems. In: Studies in Mathematics and its Applications, vol. 15, pp. 299–331. Elsevier (1983). https://doi.org/10.1016/S0168-2024(08)70034-1
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976). https://doi.org/10.1016/0898-1221(76)90003-1
Gardiner, F., Lakic, N., Society, A.M.: Quasiconformal Teichmuller Theory. Mathematical surveys and monographs. American Mathematical Society (2000). https://books.google.de/books?id=BLfyBwAAQBAJ
Gilmartin, J.J., Gibson, G.J.: Abnormalities of chest wall motion in patients with chronic airflow obstruction. Thorax (1984)
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Scientific Computation. Springer, Berlin (2013). https://books.google.co.uk/books?id=vGrwCAAAQBAJ
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Society for Industrial and Applied Mathematics (1989) https://doi.org/10.1137/1.9781611970838
He, B., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23(3), 151–161 (1998). https://doi.org/10.1016/S0167-6377(98)00044-3
Heaton, J., Yandrapalli, S: Premature atrial contractions. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing (2021). https://www.ncbi.nlm.nih.gov/books/NBK559204/
Hong, M., Luo, Z.Q.: On the linear convergence of the alternating direction method of multipliers (2012)
Islam, M., Kabir, M.: A new feature-based image registration algorithm. Comput. Technol. Appl. 4, 79–84 (2013)
Javed, S., Oh, S.H., Sobral, A., Bouwmans, T., Jung, S.K.: Background subtraction via superpixel-based online matrix decomposition with structured foreground constraints. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 930–938 (2015). https://doi.org/10.1109/ICCVW.2015.123
Kaplan, J., Donoho, D.: The morphlet transform: a multiscale representation for diffeomorphisms. In: Proceedings of the Workshop on Image Registration in Deformable Environments, pp. 21–30 (2006)
Kumar, A., Chan, T.: Iris recognition using quaternionic sparse orientation code (qsoc). In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 59–64 (2012). https://doi.org/10.1109/CVPRW.2012.6239216
Lam, K., Ng, T., Lui, L.: Multiscale representation of deformation via Beltrami coefficients. SIAM J. Multiscale Model. Simul. 15(2), 864–891 (2017)
Lam, K.C., Lui, L.M.: Landmark- and Intensity-based registration with large deformations via Quasi-conformal maps. SIAM J. Imag. Sci. 7(4), 2364–2392 (2014). https://doi.org/10.1137/130943406
Lee, Y.T., Lam, K.C., Lui, L.M.: Landmark-matching transformation with large deformation via n-dimensional quasi-conformal maps. J. Sci. Comput. 67(3), 926–954 (2016)
Lehto, O., Virtanen, K.: Quasiconformal mappings in the plane (2011)
Li, Y., Liu, G., Liu, Q., Sun, Y., Chen, S.: Moving object detection via segmentation and saliency constrained rpca. Neurocomputing 323, 352–362 (2019) https://doi.org/10.1016/j.neucom.2018.10.012
Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. Math. Program. 9 (2010)
Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., Ma, Y.: Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In: International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Aruba, Dutch Antilles (2009)
Lui, L., Wong, T., Gu, X., Thompson, P., Chan, T., Yau, S.: Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow. In: Medical Image Computing and Computer Assisted Intervention(MICCAI), art II, LNCS 6362 pp. 323–330 (2010)
Lui, L., Wong, T., Zeng, W., Gu, X., Thompson, P., Chan, T., Yau, S.: Detection of shape deformities using Yamabe flow and Beltrami coefficients. J. Inverse Problem Imaging 4(2), 311–333 (2010)
Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using Beltrami representation. SIAM J. Imag. Sci. 6(4), 1880–1902 (2013)
Lui, L.M., Lam, K.C., Yau, S.T., Gu, X.: Teichmuller mapping (t-map) and its applications to landmark matching registration. SIAM J. Imag. Sci. 7(1), 391–426 (2014)
Lui, L.M., Thiruvenkadam, S., Wang, Y., Thompson, P.M., Chan, T.F.: Optimized conformal surface registration with shape-based landmark matching. SIAM J. Imag. Sci. 3(1), 52–78 (2010)
Lui, L.M., Wen, C.: Geometric registration of high-genus surfaces. SIAM J. Imag. Sci. 7(1), 337–365 (2014)
Lui, L.M., Wong, T.W., Zeng, W., Gu, X., Thompson, P.M., Chan, T.F., Yau, S.T.: Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput. 50(3), 557–585 (2012)
Lui, L.M., Zeng, W., Yau, S.T., Gu, X.: Shape analysis of planar multiply-connected objects using conformal welding. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1384–1401 (2013)
Ma, S., Goldfarb, D., Chen, L.: Fixed point and bregman iterative methods for matrix rank minimization (2009)
Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 450–462 (2013). https://doi.org/10.1109/TPAMI.2012.97
Peng, L., Huang, Z.Y., Jia, Y.Y.: Application of the combinatorial model of wavelet analysis and support vector machines in deformation analysis. In: Proceedings of the 2nd International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), pp. 1–4 (2012)
Qiu, D., Lui, L.M.: Inconsistent surface registration via optimization of mapping distortions. J. Sci. Comput. 83(3), 1–31 (2020)
Sobral, A., Bouwmans, T., ZahZah, E.: Double-constrained rpca based on saliency maps for foreground detection in automated maritime surveillance. In: 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2015). https://doi.org/10.1109/AVSS.2015.7301753
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013). https://doi.org/10.1109/TMI.2013.2265603
Taimouri, V., Hua, J.: Deformation similarity measurement in quasi-conformal shape space. Graph. Models 76, 57–69 (2014)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996). http://www.jstor.org/stable/2346178
Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Trans. Graphics (TOG) 22, 445–452 (2003)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1, Supplement 1), S61 – S72 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.040
Wang, Y., Lui, L.M., Gu, X., Hayashi, K.M., Chan, T.F., Toga, A.W., Thompson, P.M., Yau, S.T.: Brain surface conformal parameterization using Riemann surface structure. IEEE Trans. Med. Imaging 26(6), 853–865 (2007)
Yao, J.: Image registration based on both feature and intensity matching. In: 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), vol. 3, pp. 1693–1696 (2001)
Yasein, M.S., Agathoklis, P.: A feature-based image registration technique for images of different scale. In: 2008 IEEE International Symposium on Circuits and Systems, pp. 3558–3561 (2008)
Ye, C.H., Yuan, X.M.: A descent method for structured monotone variational inequalities. Optim. Methods Softw. 22(2), 329–338 (2007). https://doi.org/10.1080/10556780600552693
Yuan, X., Yang, J.: Sparse and low rank matrix decomposition via alternating direction method. Pac. J. Optim. 9 (2009)
Zeng, W., Lui, L.M., Shi, L., Wang, D., Chu, W.C., Cheng, J.C., Hua, J., Yau, S.T., Gu, X.: Shape analysis of vestibular systems in adolescent idiopathic scoliosis using geodesic spectra. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 538–546. Springer (2010)
Zhou, T., Tao, D.: Godec: randomized lowrank and sparse matrix decomposition in noisy case. pp. 33–40 (2011)
Zhou, X., Yang, C., Yu, W.: Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 597–610 (2013). https://doi.org/10.1109/TPAMI.2012.132
Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003). https://doi.org/10.1016/S0262-8856(03)00137-9
Acknowledgements
L.M. Lui is supported by HKRGC GRF (Project ID: 2130549).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
HKRGC GRF (Project ID:2130549, Reference ID: 14306917), CUHK Direct Grant (Project ID: 4053292).
Rights and permissions
About this article
Cite this article
Law, H., Siu, C.Y. & LUI, L.M. Decomposition of Longitudinal Deformations via Beltrami Descriptors. J Sci Comput 89, 6 (2021). https://doi.org/10.1007/s10915-021-01569-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01569-x