Skip to main content
Log in

An Effective Finite Element Method with Singularity Reconstruction for Fractional Convection-diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a finite element method with singularity reconstruction for fractional convection-diffusion equation involving Riemann-Liouville derivative of order \(\alpha \in (1,2)\). Jin et al. (ESAIM Math. Model. Numer. Anal. 49(5):1261–1283, 2015) developed a singularity reconstruction strategy for fractional reaction-diffusion equation in which the solution was split into a singular part \(x^{\alpha -1}\) and a regular part \(u^r\) with \(u^r(0)=u^r(1)=0\). In this paper we transform the original problem into a one-point boundary-value problem whose solution u satisfies the condition \(u(0)=({}_0D_x^{\alpha -1}u)(0)=0\). A novel Petrov–Galerkin variational formulation is developed on the domain \({\tilde{H}}_L^{\alpha /2}(\Omega ) \times {\tilde{H}}_R^{\alpha /2}(\Omega )\), based on which the finite element approximation scheme is established. The inf-sup conditions for both continuous case and discrete case are analyzed thus the corresponding well-posedness is verified. The \(L^2\)-error estimate is derived by considering an adjoint variational formulation which is different from the original Petrov–Galerkin weak form. Some numerical results for piecewise linear and quadratic finite elements are presented to verify the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zayernouri, M., Karniadakis, G.E.: Fractional sturm-liouville eigen-problems. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  Google Scholar 

  2. Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460–480 (2014)

    Article  MathSciNet  Google Scholar 

  3. Zhang, Z., Zeng, F., Karniadakis, G.E.: Optimal error estimates of spectral petrov-galerkin and collocation methods for initial value problems of fractional differential equations. SIAM J. Numer. Anal. 53(4), 2074–2096 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  5. Mao, Z., Chen, S., Shen, J.: Effcient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  Google Scholar 

  6. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-d fractional order diffusion equations. Math. Comput. 87(313), 2273–2294 (2018)

    Article  MathSciNet  Google Scholar 

  7. Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56(1), 24–49 (2018)

    Article  MathSciNet  Google Scholar 

  8. Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)

    Article  MathSciNet  Google Scholar 

  9. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  10. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-exlicit difference schemes for nonlinear fractional differential equations with non-smooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016)

    Article  Google Scholar 

  11. Ford, N.J., Yan, Y.: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calculus Appl. Anal. 20(5), 1076–1105 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zeng, F., Mao, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point sigularities. SIAM J. Sci. Comput. 39(1), A360–A83 (2017)

    Article  Google Scholar 

  13. Zhao, L., Deng, W.: High order finite difference methods on non-uniform meshes for space fractional operators. Adv. Comput. Math. 42(2), 425–468 (2016)

    Article  MathSciNet  Google Scholar 

  14. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. 43, 77–99 (2017)

    Article  MathSciNet  Google Scholar 

  16. Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44(3), 745–771 (2018)

    Article  MathSciNet  Google Scholar 

  17. Jin, B., Zhou, Z.: A finite element method with singularity reconstruction for fractional boundary value problems. ESAIM: Math. Model. Numer. Anal. 49(5), 1261–1283 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann-Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)

    Article  MathSciNet  Google Scholar 

  19. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Book  Google Scholar 

  20. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego, California (1999)

    MATH  Google Scholar 

  21. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)

    Article  MathSciNet  Google Scholar 

  22. Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer, Berlin (2004)

    Book  Google Scholar 

  24. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA (1985)

    MATH  Google Scholar 

  25. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

T. Fu and Z. Zheng is supported by the National Key Research and Development Program of China (Nos. 2017YFB0701700, 2017YFB0305601). B. Duan is supported by China Postdoctoral Science Foundation (No. 2020M682895).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beiping Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Duan, B. & Zheng, Z. An Effective Finite Element Method with Singularity Reconstruction for Fractional Convection-diffusion Equation. J Sci Comput 88, 59 (2021). https://doi.org/10.1007/s10915-021-01573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01573-1

Keywords

Mathematics Subject Classification

Navigation