Skip to main content
Log in

Meshless Symplectic and Multi-symplectic Local RBF Collocation Methods for Hamiltonian PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This study presents a novel meshless symplectic and multi-symplectic local radial basis function (RBF) collocation method (LRBFCM) for Hamiltonian partial differential equations. Specifically, the nonlinear wave equation and nonlinear Schrödinger equation are considered. The discretization in space is based on LRBFCM and then in time by symplectic integrator. The conservativeness of the method is explored and the accuracy is assessed. The LRBFCM is simple and efficient, since it can avoid the ill-conditioned problem and shape-parameter-sensitivity of global RBF method. Numerical experiments with uniform knots and random knots are designed to illustrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Bridges, T., Reich, S.: Numerical methods for Hamiltonian PDEs. J Phys A: Math Gen. 39, 5287–5320 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cahn, J.: The time cone method for nucleartion and growth kinetics on a finite domain. Mater. Res. Soc. Symp. Proc 398, 425–438 (1995)

    Article  Google Scholar 

  3. Chen, C., Hong, J.: Symplectic Runge-Kutta semidiscretization for stochastic Schrödinger eqation. SIAM J. Numer. Anal. 54, 2569–2593 (2016)

    Article  MathSciNet  Google Scholar 

  4. Chen, M., Ling, L.: Extrinsic meshless collocation methods for PDEs on manifolds. SIAM J. Numer. Anal. 58(2), 988–1007 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cheng, A., Golberg, M., Kansa, E., Zammito, G.: Exponential convergence and H-c multiquadric collocation method for Partial differential equations. Numer. Meth. Part. D.E. 19, 571–594 (2003)

    Article  MathSciNet  Google Scholar 

  6. Drazin, P., Johnson, R.: Solitons: An introduction. Cambridge University Press, Cambridge, UK (1989)

    Book  Google Scholar 

  7. Duncan, D.: Symplectic finite difference approximations of the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)

    Article  MathSciNet  Google Scholar 

  8. Fasshauer, G.: Meshfree Approximation Methods with Matlab. World Scientific, Singapore (2007)

    Book  Google Scholar 

  9. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hong, J., Li, C.: Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211, 448–472 (2006)

    Article  MathSciNet  Google Scholar 

  11. Kansa, E.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics. I. Surface approximations and partial derivative estimates. Comput. Math. Appl., 19, 127–145 (1990)

    Article  MathSciNet  Google Scholar 

  12. Kong, L., Zhang, J., Cao, Y., Duan, Y., Huang, H.: Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon- Schrödinger equations. Comput. Phys. Commun. 181, 1369–1377 (2010)

    Article  Google Scholar 

  13. Kosec, G., Šarler, B.: Local RBF collocation method for Darcy flow. GMES-Comp. Model. Eng. 25(3), 197–208 (2008)

    Google Scholar 

  14. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity method for solving PDEs. SIAM J. Sci. Comput. 39(6), 2538–2563 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lehto, E., Shankar, V., Wright, G.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput. 39(5), 2129–2151 (2017)

    Article  MathSciNet  Google Scholar 

  16. Liu, Y., Yamamoto, M.: On the multiple hyperbolic systems modeling phase transformation kinetics. Appl. Anal 93, 1297–1318 (2014)

    Article  MathSciNet  Google Scholar 

  17. McLachlan, R., Sun, Y., Tse, P.: Linear stability of partitional Runge-Kutta method. SIAM J. Numer. Anal. 49, 232–263 (2011)

    Article  MathSciNet  Google Scholar 

  18. McLachlan, R., Wilkins, M.: The multisymplectic diamond scheme. SIAM J. Sci. Compt. 37, 369–390 (2015)

    Article  MathSciNet  Google Scholar 

  19. Reich, S.: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)

    Article  MathSciNet  Google Scholar 

  20. Rippa, S.: An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolatio. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MathSciNet  Google Scholar 

  21. Šarler, B.: A radial basis function collocation approach in computational fluid dynamics. GMES-Comp. Model. Eng. 7, 185–193 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Šarler, B., Vertnik, R.: Meshless explicit local radial basis function collocation method for diffusion problems. Computer. Math. Appl. 51, 1269–1282 (2006)

    Article  Google Scholar 

  23. Sarra, S.: A local radial basis function method for advection diffusion reactions on complexly shaped domains. Appl. Math. Comput. 218, 9853–9865 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equation. SIAM J. Numer. Anal. 46, 2022–2038 (2008)

    Article  MathSciNet  Google Scholar 

  25. Wang, L., Chen, W., Wang, C.: An energy-conserving second order numerical scheme for nonlinear hyperbolic equation with an exponential nonlinear term. J. Comput. Appl. Math. 280, 347–366 (2015)

    Article  MathSciNet  Google Scholar 

  26. Wang, T., Guo, B., Xu, Q.: Fourth-order compuct and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  Google Scholar 

  27. Wu, Z., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA. J. Num. Anal. 13, 13–27 (1993)

    Article  MathSciNet  Google Scholar 

  28. Xu, Y., Shu, C.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)

    Article  MathSciNet  Google Scholar 

  29. Wu, Z., Zhang, S.: A meshless symplectic algorithm for multi-variate Hamiltonian PDEs with radial basis approximation. Eng. Anal. Bound. Elem. 50, 258–264 (2015)

    Article  MathSciNet  Google Scholar 

  30. Zhang, S., Chen, S.: A meshless symplectic method for two-dimensional Schrödinger equation with radial basis functions. Comput. Math. Appl. 72, 2143–2150 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhang, S.: A symplectic procedure for two-dimensional coupled seismic wave equations using radial basis functions interpolation. Comput. Math. Appl. 76, 2167–2178 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zhou, Y.: Application of Discrete Functional Analysis to the Finite Difference Method. International Academeic Publisher, Beijing (1990)

    Google Scholar 

  33. Zhu, H., Tang, L., Song, S., Tang, Y., Wang, D.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229, 2550–2572 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our deep appreciation to the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengliang Zhang.

Ethics declarations

Declaration of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S. Meshless Symplectic and Multi-symplectic Local RBF Collocation Methods for Hamiltonian PDEs. J Sci Comput 88, 90 (2021). https://doi.org/10.1007/s10915-021-01605-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01605-w

Keywords

Mathematics Subject Classification

Navigation