Skip to main content
Log in

A Positivity-Preserving Finite Volume Scheme with Least Square Interpolation for 3D Anisotropic Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new nonlinear finite volume scheme preserving positivity for 3D anisotropic diffusion equation is proposed. A distinct feature of our new scheme is that the auxiliary vertex unknowns appearing in the nonlinear two-point flux approximation are interpolated by the least-square method combined with the so-called correction function. The correction function is local, and only solved when the coefficient discontinuity occurs. Compared with other existing 3D interpolation formulas, our interpolation formula is designed for the general polyhedron mesh and coefficient discontinuity with lower and adaptive computational complexity. The scheme is proven to be positivity-preserving. Numerical examples are presented to demonstrate the second-order accuracy and positivity-preserving property for various anisotropic diffusion problems on the distorted meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aavatsmark, I., Eigestad, G.T.: Numerical convergence of the MPFA O-method and U-method for general quadrilateral grids. Int. J. Numer. Meth. Fluids 51, 939–961 (2006)

    MATH  Google Scholar 

  2. Agelas, L., Eymard, R., Herbin, R.: A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. C. R. Acad. Sci. Paris Ser. I(347), 673–676 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Burdakov, O., Kapyrin, I., Vassilevski, Y.: Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions. J. Comput. Phys. 231, 3126–3142 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Chang, J., Nakshatrala, K.B.: Variational inequality approach to enforcing the non-negative constraint for advection-diffusion equations. Comput. Methods Appl. Mech. Eng. 320, 287–334 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Cances, C., Cathala, M., Potier, C.L.: Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math. 125(1), 387–417 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Chen, L.: iFEM: an integrated finite element method package in MATLAB, Technical Report, University of California at Irvine, (2009)

  7. Chen, G., Li, D., Su, Z.: Difference scheme by integral interpolation method for three dimensional diffusion equations. Chin. J. Comput. Phys. 20, 205–209 (2003)

    Google Scholar 

  8. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)

    MathSciNet  MATH  Google Scholar 

  9. Danilov, A.A., Vassilevski, Y.V.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Modell. 24, 207–227 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Draganescu, A., Dupont, T.F., Scott, L.R.: Failure of the discrete maximum pricinple for an elliptic finite element problems. Math. Comput. 74, 1–23 (2004)

    Google Scholar 

  11. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. (M3AS) 24, 1575–1619 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Edwards, M.G., Zheng, H.: Double-families of quasi-positive Darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids. J. Comput. Phys. 229, 594–625 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Edwards, M.G., Zheng, H.: Quasi M-matrix multifamily continuous Darcy-flux approximations with full pressure support on structured and unstructured grids in three dimensions. SIAM J. Sci. Comput. 33, 455–487 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Eymard, R., Henry, G., Herbin, R.: et al., 3D bencnmark on discretization schemes for anisotropic diffusion problems on general grids. In: Finite Volumes for Complex Applications VI Problems and Perspectives, (2011), 895–930

  15. Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Sci. Comput. 37, 420–438 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Gao, Z., Wu, J.: A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes. Int. J. Numer. Meth. Fluids 67, 2157–2183 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Gao, Z., Wu, J.: A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes. J. Comput. Phys. 250, 308–331 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Hajibeygi, H., Bonfigli, G., Hesse, M.A., Jenny, P.: Iterative multiscale finite-volume method. J. Comput. Phys. 227, 8604–8621 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Karimi, S., Nakshatrala, K.B.: Do current lattice Boltzmann methods for diffusion and advection-diffusion equations respect maximum principle and the non-negative constraints? Commun. Comput. Phys. 20, 374–404 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Lai, X., Sheng, Z., Yuan, G.: Monotone finite volume scheme for three dimensional diffusion equation on tetrahedral meshes. Commun. Comput. Phys. 21(1), 162–181 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Lan, K., Liu, J., Li, Z., et al.: Progress in octahedral spherical hohlraum study. Matter Radiat. Extrem. 1, 8–27 (2016)

    Google Scholar 

  22. Lu, C., Huang, W., Qiu, J.: Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems. Numer. Math. 127, 515–537 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Lu, C., Huang, W., Van Vleck, E.S.: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations. J. Comput. Phys. 242, 24–36 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Lindl, J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933–4023 (1995)

    Google Scholar 

  25. Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227, 492–512 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems. SIAM J. Sci. Comput. 35, 1120–1136 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Model. 27, 369–385 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228, 703–716 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes. J. Comput. Phys. 229, 4017–4032 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Lipnikov, K., Manzini, G., Svyatskiy, D.: Analysis of monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230, 2620–2642 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Liska, R., Shashkov, M.: Enforcing the discrete maximum pricinple for linear finite element solutions of second-order elliptic problems. Commun. Comput. Phys. 3, 852–877 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Le Potier, C.: Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes, C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 787–792

  33. Mudunuru, M.K., Nakshatrala, K.B.: On enforcing maximum pricinples and achieving element-wise species for advection-diffusion-reaction equations under the finite element method. J. Comput. Phys. 305, 448–493 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Mudunuru, M.K., Nakshatrala, K.B.: On mesh restrictions to satisfy comparison principles, maximum principles, and the non-negative constraint: Recent developments and new results. Mech. Adv. Mater. Struc. 24, 556–590 (2017)

    Google Scholar 

  35. Nordbotten, J.M., Aavatsmark, I., Eigestad, G.T.: Monotonicity of control volume methods. Numer. Math. 106, 255–288 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Nagarajan, H., Nakshatrala, K.B.: Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids. Int. J. Numer. Meth. Fluids 67, 820–847 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Nakshatrala, K.B., Nagarajan, H., Shabouei, M.: A numerical methodology for enforcing maximum principles and the non-negative constraint for transient diffusion equations. Commun. Comput. Phys. 19, 53–93 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Schneider, M., Flemisch, B., Helmig, R., Terekhov, K., Tchelepi, H.: Monotone nonlinear finite-volume method for challenging grids. Comput. Geosci. 22(2), 565–586 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Schneider, M., Agélas, L., Enchéry, G., Flemisch, B.: Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes. J. Comput. Phys. 351, 80–107 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Sheng, Z., Yuan, G.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comput. Phys. 230, 2588–2604 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Sheng, Z., Yue, J., Yuan, G.: Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31, 2915–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Su, S., Dong, Q., Wu, J.: A decoupled and positivity-preserving discrete duality finite volume scheme for anisotropic diffusion problems on general polygonal meshes. J. Comput. Phys. 372, 773–798 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Terekhov, K.M., Mallison, B.T., Tchelepi, H.A.: Cell-centered nonlinear finite volume methods for the heterogeneous anisotropic diffusion problem. J. Comput. Phys. 330, 245–267 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Wang, S., Hang, X., Yuan, G.: A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes. J. Comput. Phys. 350, 590–606 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Wang, S., Hang, X., Yuan, G.: A positivity-preserving pyramid scheme for anisotropic diffusion problems on general hexahedral meshes with nonplanar cell faces. J. Comput. Phys. 371, 152–167 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Wang, S., Yuan, G., Li, Y., Sheng, Z.: Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems. Int. J. Numer. Meth. Fluids 70, 1188–1205 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Xie, H., Xu, X., Zhai, C.L., Yong, H.: A positivity-preserving finite volume scheme for heat conduction equation on generalized polyhedral meshes. Commun. Comput. Phys. 24, 1375–1408 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Xie, H., Zhai, C.L., Xu, X., et al.: A monotone finite volume scheme with fixed stencils for 3D heat conduction equation. Commun. Comput. Phys. 26, 1118–1142 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Yong, H., Song, P., Zhai, C.L., et al.: Numerical simulation of 2-D radiation-drive ignition implosion process. Commun. Theor. Phys. 59, 737–744 (2013)

    Google Scholar 

  51. Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227, 6288–6312 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, W., Kobaisi, M.A.: Cell-centered nonlinear finite-volume methods with improved robustness. SPE J. (2020). https://doi.org/10.2118/195694-PA

    Article  Google Scholar 

  53. Zhang, X., Su, S., Wu, J.: A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids. J. Comput. Phys. 344, 419–436 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Zhao, F., Lai, X., Yuan, G., Sheng, Z.: A new interpolation for auxiliary unknowns of the monotone finite volume scheme for 3D diffusion equations. Commun. Comput. Phys. 27, 1201–1233 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 11901043,11671048,11671302,11771055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Yong.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Data availability statements

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Xu, X., Zhai, C. et al. A Positivity-Preserving Finite Volume Scheme with Least Square Interpolation for 3D Anisotropic Diffusion Equation. J Sci Comput 89, 53 (2021). https://doi.org/10.1007/s10915-021-01629-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01629-2

Keywords

Navigation