Skip to main content
Log in

Shear Decoupled Parallel Scalable Preconditioners for Nonlinear Thermo-Mechanical Coupled Contact Applications

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

It is necessary to solve the thermo-mechanical coupled contact problem in structural mechanical analysis, such as the dam structural analysis. Because of the complexity of coupled models, it is very difficult to solve the discretized system in structural mechanical analysis. At the same time, for real applications such as the dam structural analysis, the simulation domain has complex structures, which result in a number of mesh elements more than \(10^8\) for high resolution simulations. Therefore, the scale of the discretized system is very large. In this paper, the discretized themo-mechanical coupling contact system on hundreds million unstructured meshes is parallel solved by the Newton–Krylov method, in which the efficiency of the Krylov methods is strongly dependent on the preconditioning. An efficient preconditioning method is constructed for the themo-mechanical coupling contact problem. Three steps are used to construct the preconditioner. Firstly, for the mechanical problem, the mechanical effect is analyzed for the dam structural analysis, and a preconditioner is constructed for the elasticity problem by omitting the shearing effect. As the dominant material in a dam structural analysis is rock-soil, and rock-soil exhibits anti-shearing property, it is reasonable to omit the shearing effect for constructing the preconditioner. Furthermore, a preconditioner is constructed for the thermo-mechanical model by omitting the coupling between the thermal and mechanical effectiveness in the model. The preconditioner has a block diagonal structure, with each block being a diffusion operator. It is suitable for large scale parallel computing since each block can be solved independently. Furthermore, since each block is a diffusion operator, a multi-grid method can be employed to effectively solve each block equation. Finally, based on the preconditioning of the thermo-mechanical model, a preconditioner is constructed for the thermo-mechanical coupling contact problem by combining the dual motar method for contact problems. Numerical results show that the preconditioning method is very effective, and the convergence rate of the Krylov method can be improved dramatically when it is used to solve the themo-mechanical coupling contact problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An, H.B., Bai, Z.Z.: A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations. Appl. Numer. Math. 57(3), 235–252 (2007). https://doi.org/10.1016/j.apnum.2006.02.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Axelsson, O.: On iterative solvers in structural mechanics: separate displacement orderings and mixed variable methods. Math. Comput. Simul. 50(1), 11–30 (1999). https://doi.org/10.1016/S0378-4754(99)00058-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Axelsson, O.: A survey of robust preconditioning methods. In: Alefeld, G., Chen, X. (eds.) Topics in Numerical Supplement Analysis, vol. 15. Springer, Vienna (2001)

    Google Scholar 

  4. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002). https://doi.org/10.1006/jcph.2002.7176

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyle, J., Mihajlović, M., Scott, J.: HSL_MI20: an efficient AMG preconditioner for finite element problems in 3D. Int. J. Numer. Methods Eng. 82(1), 64–98 (2010). https://doi.org/10.1002/nme.2758

    Article  MATH  Google Scholar 

  6. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11(3), 450–481 (1990). https://doi.org/10.1137/0911026

    Article  MathSciNet  MATH  Google Scholar 

  7. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton–Krylov algorithms. SIAM J. Optim. 4(2), 297–330 (1994). https://doi.org/10.1137/0804017

    Article  MathSciNet  MATH  Google Scholar 

  8. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994). https://doi.org/10.1137/0804022

    Article  MathSciNet  MATH  Google Scholar 

  9. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996). https://doi.org/10.1137/0917003

    Article  MathSciNet  MATH  Google Scholar 

  10. Gitterle, M.: A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. Ph.D. Thesis, Technische Universität München (2012)

  11. Hallquist, J., Goudreau, G., Benson, D.: Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Methods Appl. Mech. Eng. 51(1), 107–137 (1985). https://doi.org/10.1016/0045-7825(85)90030-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Hüeber, S., Wohlmuth, B.: Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Eng. 198(15), 1338–1350 (2009). https://doi.org/10.1016/j.cma.2008.11.022

    Article  MATH  Google Scholar 

  13. Hughes, T.J., Taylor, R.L., Sackman, J.L., Curnier, A., Kanoknukulchai, W.: A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 8(3), 249–276 (1976). https://doi.org/10.1016/0045-7825(76)90018-9

    Article  MATH  Google Scholar 

  14. Hypre web page. https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html

  15. International commission on large dams (icold). In: Benchmark Workshops on Dam Safety, Graz, Austria (2013)

  16. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia (1995). https://doi.org/10.1137/1.9781611970944

  17. Kelley, C.T.: Solving nonlinear equations with Newton’s method. In: Society for Industrial and Applied Mathematics, Philadelphia (2003). https://doi.org/10.1137/1.9780898718898

  18. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004). https://doi.org/10.1016/j.jcp.2003.08.010

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, Q., Mo, Z., Zhang, A., Yang, Z.: JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes. CCF Trans. High Perform. Comput. 1(1), 35–48 (2019). https://doi.org/10.1007/s42514-019-00001-z

    Article  Google Scholar 

  20. Luo, L., Chen, Y., Zhong, H.T.: Application of geomembrane in temporary treatment of extrusion damage of dam face slab. Dam Saf. 2, 48–51 (2013)

    Google Scholar 

  21. Mihajlović, M.D., Mijalković, S.: A component decomposition preconditioning for 3d stress analysis problems. Numer. Linear Algebra Appl. 9, 567–583 (2002). https://doi.org/10.1002/nla.298

    Article  MathSciNet  MATH  Google Scholar 

  22. Pawlowski, R.P., Shadid, J.N., Simonis, J.P., Walker, H.F.: Globalization techniques for Newton–Krylov methods and applications to the fully coupled solution of the Navier–Stokes equations. SIAM Rev. 48(4), 700–721 (2006). https://doi.org/10.1137/S0036144504443511

    Article  MathSciNet  MATH  Google Scholar 

  23. Popp, A.: Mortar methods for computational contact mechanics and general interface problems. Ph.D. Thesis, Technische Universität München (2012)

  24. Popp, A., Seitz, A., Gee, M.W., Wall, W.A.: Improved robustness and consistency of 3d contact algorithms based on a dual mortar approach. Comput. Methods Appl. Mech. Eng. 264, 67–80 (2013). https://doi.org/10.1016/j.cma.2013.05.008

    Article  MathSciNet  MATH  Google Scholar 

  25. Sterck, H.D., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27(4), 1019–1039 (2006). https://doi.org/10.1137/040615729

    Article  MathSciNet  MATH  Google Scholar 

  26. Taylor, R.L., Papadopoulos, P.: On a patch test for contact problems in two dimensions. In: Wriggers, P., Wagner, W. (eds.) Computational Methods in Nonlinear Mechanics, pp. 690–702. Springer, Berlin (1991)

    Google Scholar 

  27. Tian, R., Zhou, M., Wang, J., Li, Y., An, H., Xu, X., Wen, L., Wang, L., Xu, Q., Leng, J., Xu, R., Zhang, B., Liu, W., Mo, Z.: A challenging dam structural analysis: large-scale implicit thermo-mechanical coupled contact simulation on Tianhe-II. Comput. Mech. 63(1), 99–119 (2019). https://doi.org/10.1007/s00466-018-1586-5

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Niu, H., Wang, J., Wang, L., Xiao, S., Tian, R.: A parallel extensible toolkit for multiple Galerkin methods and multiple physics coupling, CCCM-ISCM, Hangzhou, pp. 16–20 (2016)

  29. Wohlmuth, B.I.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2000). https://doi.org/10.1137/S0036142999350929

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Z.P., Guo, C.: Research on the concrete face slab rupture of high CFRD. Water Power 33(9), 81–84 (2007)

    Google Scholar 

  31. Zhou, M., Zhang, B., Peng, C., Wu, W.: Three-dimensional numerical analysis of concrete-faced rockfill dam using dual-mortar finite element method with mixed tangential contact constraints. Int. J. Numer. Anal. Methods Geomech. 40(15), 2100–2122 (2016)

    Article  Google Scholar 

  32. Zienkiewicz, O.C., Taylor, R.L., Fox, D.: The Finite Element Method for Solid and Structural Mechanics, 7th edn. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge professors Rong Tian, Mozhen Zhou, and Shaoliang Hu for their help with the manuscript. Drs. Xiaoyu Duan and Biyi Wang helped to implement several numerical tests. The authors also gratefully acknowledge the referee and Chi-Wang Shu for many valuable suggestions and comments, which were very helpful for improving the original paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyao Mo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by National Key R&D Program of China (Nos. 2017YFA0603903, 2016YFB0201002), National Natural Science Foundation of China (No. 12171045), and Science Challenge Project (No. TZ2016002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, H., Mo, Z., Wang, J. et al. Shear Decoupled Parallel Scalable Preconditioners for Nonlinear Thermo-Mechanical Coupled Contact Applications. J Sci Comput 90, 4 (2022). https://doi.org/10.1007/s10915-021-01643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01643-4

Keywords

Mathematics Subject Classification

Navigation