Skip to main content
Log in

Unconditional Stability and Optimal Error Estimates of Euler Implicit/Explicit-SAV Scheme for the Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The unconditional stability and convergence analysis of the Euler implicit/explicit scheme with finite element discretization are studied for the incompressible time-dependent Navier–Stokes equations based on the scalar auxiliary variable approach. Firstly, a corresponding equivalent system of the Navier–Stokes equations with three variables is formulated, the stable finite element spaces are adopted to approximate these variables and the corresponding theoretical analysis results are provided. Secondly, a fully discrete scheme based on the backward Euler method is developed, the temporal treatment is based on the Euler implicit/explicit scheme, which is implicit for the linear terms and explicit for the nonlinear term. Hence, a constant coefficient algebraic system is formed and it can be solved efficiently. The discrete unconditional energy dissipation and stability of numerical solutions in various norms are established with any restriction on the time step, optimal error estimates are also provided. Finally, some numerical results are provided to illustrate the performances of the considered numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Raw data were generated at the FreeFEM++ 14.3 64. Derived data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Ammi, A.A., Marion, M.: Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier–Stokes equations. Numer. Math. 68, 189–213 (1994)

    Article  MathSciNet  Google Scholar 

  2. Dubois, T., Jauberteau, F., Temam, R.: Solution of the incompressible Navier–Stokes equations by the nonlinear Galerkin method. J. Sci. Comput. 8, 167–194 (1993)

    Article  MathSciNet  Google Scholar 

  3. Erturk, E., Corke, T.C., GÄokcÄol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numeri. Methods Fluids 48, 747–774 (2005)

  4. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressibel flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  Google Scholar 

  5. Giraldo, F.X., Restelli, M., Laeuter, M.: Semi-implicit formulations of the Navier–Stokes equations: application to nonhydrostatic atmospheric modeling. SIAM J. Sci. Comput. 32, 3394–3425 (2010)

    Article  MathSciNet  Google Scholar 

  6. Girault, V., Raviart, P.A.: Finite Element Methods for the the Navier–Stokes Equations. Spinger-Verlag, Berlin (1986)

    Book  Google Scholar 

  7. Hansen, E., Stillfjord, T.: Convergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations. Math. Comput. 82(284), 1975–1985 (2013)

    Article  MathSciNet  Google Scholar 

  8. He, Y.N.: A fully discrete stabilized finite-element method for the time-dependent Navier–Stokes problem. IMA J. Numer. Anal. 23, 665–691 (2003)

    Article  MathSciNet  Google Scholar 

  9. He, Y.N.: The Euler implicit/explicit scheme for the 2D time-dependent Navier–Stokes equations with smooth or non-smooth initial data. Math. Comput. 77(264), 2097–2124 (2008)

    Article  MathSciNet  Google Scholar 

  10. He, Y.N.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)

    Article  MathSciNet  Google Scholar 

  11. He, Y.N., Huang, P.Z., Feng, X.L.: \(H^2\)-stability of first order fully discrete schemes for the time-dependent Navier–Stokes equations. J. Sci. Comput. 62, 230–264 (2015)

    Article  MathSciNet  Google Scholar 

  12. He, Y.N., Li, K.T.: Two-level stabilized finite element methods for the steady Navier–Stokes problem. Computing 74, 337–351 (2005)

    Article  MathSciNet  Google Scholar 

  13. He, Y.N., Li, J.: A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier–Stokes equations. J. Comput. Appl. Math. 235(3), 708–725 (2010)

    Article  MathSciNet  Google Scholar 

  14. Heywood, J., Rannacher, R.: Finite element approximation of the nonstantionary Navier–Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  15. Hill, A.T., Süli, E.: Approximation of the global attractor for the incompressible Navier–Stokes equations. IMA J. Numer. Anal. 20, 633–667 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hou, T., Shi, Z.Q.: An efficient semi-implicit immersed boundary method for the Navier–Stokes equations. J. Comput. Phys. 227, 8968–8991 (2008)

    Article  MathSciNet  Google Scholar 

  17. Kaya, S., Rivière, B.: A two-grid stabilization method for solving the steady-state Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 22, 728–743 (2006)

    Article  MathSciNet  Google Scholar 

  18. Li, B.Y., Sun, W.W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10(3), 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Li, X.L., Shen, J.: Error analysis of the SAV-MAC scheme for the Navier–Stokes equations. SIAM J. Numer. Anal. 58(5), 2465–2491 (2020)

    Article  MathSciNet  Google Scholar 

  20. Li, X.L., Shen, J.: On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase-field model and its error analysis for the corresponding Cahn-Hilliard-Stokes case. Math. Models Methods Appl. Sci. 30(12), 2263–2297 (2020)

    Article  MathSciNet  Google Scholar 

  21. Li, X.L., Shen, J., Rui, H.X.: Energy stability and convergence of SAV block-centered finite difference methd for gradient flows. Math. Comput. 88(319), 2047–2068 (2019)

    Article  Google Scholar 

  22. Lin, L.L., Yang, Z.G., Dong, S.C.: Numerical approximation of incompressible Navier–Stokes equations based on an auxiliary energy variable. J. Comput. Phys. 388, 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  23. Luetjens, H., Luciani, J.F.: XTOR-2F: A fully implicit Newton–Krylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys. 229, 8130–8143 (2010)

    Article  MathSciNet  Google Scholar 

  24. Marti, J., Ryzhakov, P.B.: An explicit-implicit finite element model for the numerical solution of incompressible Navier-Stokes equations on moving grids. Comput. Methods Appl. Mech. Eng. 350, 750–765 (2019)

    Article  MathSciNet  Google Scholar 

  25. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228, 8841–8855 (2009)

    Article  MathSciNet  Google Scholar 

  26. Shen, J.: Long time stability and convergence for fully discrete nonlinear Galerkin methods. Appl. Anal. 38, 201–229 (1990)

    Article  MathSciNet  Google Scholar 

  27. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29, 57–77 (1992)

    Article  MathSciNet  Google Scholar 

  28. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62, 49–73 (1992)

    Article  MathSciNet  Google Scholar 

  29. Shen, J.: On error estimates of the projection, methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1066 (1996)

    Article  MathSciNet  Google Scholar 

  30. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56, 2895–2912 (2018)

    Article  MathSciNet  Google Scholar 

  31. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  32. Shi, H., Li, Y.: Local discontinuous Galerkin methods with implicit-explicit multistep time-marching for solving the nonlinear Cahn–Hilliard equation. J. Comput. Phys. 394, 719–731 (2019)

    Article  MathSciNet  Google Scholar 

  33. Su, J., He, Y.N.: The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier–Stokes equations. Discrete Contin. Dyn. Syst.-B 22(9), 3421–3438 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam, New York, Oxford (1984)

    MATH  Google Scholar 

  35. Tone, F., Wirosoetisno, D.: On the long-time stability of the implicit Euler scheme for the two-dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 44, 29–40 (2006)

    Article  MathSciNet  Google Scholar 

  36. Yang, X.F., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  Google Scholar 

  37. Yang, X.F., Zhao, J., He, X.M.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  Google Scholar 

  38. Yang, Z.G., Dong, S.C.: An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices. J. Comput. Phys. 393, 229–257 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zhao, J., Wang, Q., Yang, X.F.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 110(3), 279–300 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Tong Zhang was supported by the NSF of China (No.11971152) and NSF of Henan Province (202300410167). Jinyun Yuan was supported by the NSF of China (No. 12171087).

Author information

Authors and Affiliations

Authors

Contributions

Tong Zhang carried out the main theorem and wrote the paper, JinYun Yuan revised and checked the paper, Tong Zhang and JinYun Yuan read and approved the final version.

Corresponding author

Correspondence to Tong Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of competing interests.

Availability of Data and Material

All data generated or analyzed during this study are included in this work.

Code Availability

Derived data supporting the findings of this study are available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSF of China (Nos.11971152, 12171087) and NSF of Henan Province (202300410167)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Yuan, J. Unconditional Stability and Optimal Error Estimates of Euler Implicit/Explicit-SAV Scheme for the Navier–Stokes Equations. J Sci Comput 90, 1 (2022). https://doi.org/10.1007/s10915-021-01681-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01681-y

Keywords

Mathematics Subject Classification

Navigation