Skip to main content
Log in

Explicit Third-Order Unconditionally Structure-Preserving Schemes for Conservative Allen–Cahn Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

A Correction to this article was published on 23 February 2022

This article has been updated

Abstract

Compared with the well-known classical Allen–Cahn equation, the modified Allen–Cahn equation, which is equipped with a nonlocal Lagrange multiplier or a local-nonlocal Lagrange multiplier, enforces the mass conservation for modeling phase transitions. In this work, a class of up to third-order explicit structure-preserving schemes is proposed for solving these two modified conservative Allen–Cahn equations. Based on second-order finite-difference space discretization, we investigate the newly developed improved stabilized integrating factor Runge–Kutta (isIFRK) schemes for conservative Allen–Cahn equations. We prove that the original stabilized integrating factor Runge–Kutta schemes fail to preserve the mass conservation law when the stabilizing constant \(\kappa > 0\) and the initial mass does not equal zero, while isIFRK schemes not only preserve the maximum principle unconditionally, but also conserve the mass to machine accuracy without any restriction on the time-step size. Convergence of the proposed schemes are also presented. At last, a series of numerical experiments validate that each reformulation of the conservative Allen–Cahn equations has it own advantage, and isIFRK schemes can reach the expected high-order accuracy, conserve the mass, and preserve the maximum principle unconditionally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  1. Alfaro, M., Alifrangis, P.: Convergence of a mass conserving Allen–Cahn equation whose Lagrange multiplier is nonlocal and local. Interfaces Free Bound. 16(2), 243–268 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  3. Bonaventura, L., Della Rocca, A.: Unconditionally strong stability preserving extensions of the TR-BDF2 method. J. Sci. Comput. 70(2), 859–895 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brassel, M., Bretin, E.: A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Methods Appl. Sci. 34(10), 1157–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bronsard, L., Stoth, B.: Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg–Landau equation. SIAM J. Math. Anal. 28(4), 769–807 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Sun, H.W.: A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen–Cahn equations. J. Sci. Comput. 87(1), 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Hilhorst, D., Logak, E.: Mass conserving Allen–Cahn equation and volume preserving mean curvature flow. Interfaces Free Bound. 12(4), 527–549 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Cheng, Q.: The generalized scalar auxiliary variable approach (G-SAV) for gradient flows. arXiv preprint arXiv:2002.00236 (2020)

  9. Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 78(3), 1467–1487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Physica A 388(9), 1791–1803 (2009)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63(2), 317–359 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished article, pp. 1–15 (1998)

  14. Feng, J., Zhou, Y., Hou, T.: A maximum-principle preserving and unconditionally energy-stable linear second-order finite difference scheme for Allen–Cahn equations. Appl. Math. Lett. 107179 (2021)

  15. Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable sav schemes for gradient flow models. Comput. Phys. Commun. 249, 107033 (2020)

    Article  MathSciNet  Google Scholar 

  17. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, D., Pan, K., Hu, H.: A spatial fourth-order maximum principle preserving operator splitting scheme for the multi-dimensional fractional Allen–Cahn equation. Appl. Numer. Math. 151, 44–63 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hou, T., Leng, H.: Numerical analysis of a stabilized Crank–Nicolson/Adams–Bashforth finite difference scheme for Allen–Cahn equations. Appl. Math. Lett. 102, 106150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput. 72(3), 1214–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hou, T., Xiu, D., Jiang, W.: A new second-order maximum-principle preserving finite difference scheme for Allen–Cahn equations with periodic boundary conditions. Appl. Math. Lett. 104, 106265 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, J., Shu, C.W.: Bound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeong, D., Kim, J.: Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows. Comput. Fluids 156, 239–246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, K., Ju, L., Li, J., Li, X.: Unconditionally stable exponential time differencing schemes for the mass-conserving Allen–Cahn equation with nonlocal and local effects. Numer. Methods Partial Differ. Equ., 1–22

  25. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. J. Comput. Phys., 110405 (2021)

  26. Kim, J., Lee, S., Choi, Y.: A conservative Allen–Cahn equation with a space-time dependent Lagrange multiplier. Int. J. Eng. Sci. 84, 11–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT Numer. Math. 31(3), 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, B., Yang, J., Zhou, Z.: Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM J. Sci. Comput. 42(6), A3957–A3978 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, J., Ju, L., Cai, Y., Feng, X.: Unconditionally maximum bound principle preserving linear schemes for the conservative Allen–Cahn equation with nonlocal constraint. J. Sci. Comput. 87(3), 1–32 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J., Li, X., Ju, L., Feng, X.: Stabilized integrating factor Runge–Kutta method and unconditional preservation of maximum bound principle. SIAM J. Sci. Comput. 43(3), A1780–A1802 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, Y., Kim, J.: An unconditionally stable hybrid method for image segmentation. Appl. Numer. Math. 82, 32–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liao, H.L., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen–Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Okumura, M.: A stable and structure-preserving scheme for a non-local Allen–Cahn equation. Jpn. J. Ind. Appl. Math. 35(3), 1245–1281 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rubinstein, J., Sternberg, P.: Nonlocal reaction–diffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14(6), 1517–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shin, J., Lee, H.G., Lee, J.Y.: Unconditionally stable methods for gradient flow using convex splitting Runge–Kutta scheme. J. Comput. Phys. 347, 367–381 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion (2003)

  43. Takasao, K.: Existence of weak solution for volume preserving mean curvature flow via phase field method. Hokkaido Univ. Preprint Ser. Math. 1080, 1–16 (2015)

    Google Scholar 

  44. Tan, Z., Zhang, C.: The discrete maximum principle and energy stability of a new second-order difference scheme for Allen–Cahn equations. Appl. Numer. Math. 166, 227–237 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 471–481 (2016)

    MathSciNet  MATH  Google Scholar 

  46. van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20(2), 200–244 (1979)

    Article  Google Scholar 

  47. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xiao, X., He, R., Feng, X.: Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations. Numerical Methods for Partial Differential Equations pp. 1–21 (2019)

  49. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng. 345, 826–853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, J., Yuan, Z., Zhou, Z.: Arbitrarily High-order Maximum Bound Preserving Schemes with Cut-off Postprocessing for Allen-Cahn Equations. arXiv preprint arXiv:2102.13271 (2021)

  52. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218(1), 417–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yue, P., Zhou, C., Feng, J.J.: Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223(1), 1–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhai, S., Weng, Z., Feng, X.: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen–Cahn model. Appl. Math. Model. 40(2), 1315–1324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, H., Yan, J., Qian, X., Chen, X., Song, S.: Third-order accurate and unconditionally maximum-principle-preserving explicit schemes for the Allen–Cahn equation. submitted (2021)

  58. Zhang, H., Yan, J., Qian, X., Gu, X., Song, S.: On the maximum principle preserving and energy stability of high-order implicit-explicit Runge–Kutta schemes for the space-fractional Allen–Cahn equation. Numerical Algorithms, accepted (2021)

  59. Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge–Kutta schemes for Allen–Cahn equation. Appl. Numer. Math. 161, 372–390 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, J., Chen, C., Yang, X., Chu, Y., Xia, Z.: Efficient, non-iterative, and second-order accurate numerical algorithms for the anisotropic Allen–Cahn equation with precise nonlocal mass conservation. J. Comput. Appl. Math. 363, 444–463 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang, J., Yang, X.: Numerical approximations for a new L2-gradient flow based Phase field crystal model with precise nonlocal mass conservation. Comput. Phys. Commun. 243, 51–67 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

H. Zhang and J. Yan thank Prof. Shuying Zhai (Huaqiao University) and Dr. Jingwei Li (Beijing Normal University) for valuable discussions. The constructive suggestions from anonymous referees are highly appreciated.

Funding

This work was supported by the National Key R&D Program of China (SQ2020YFA0709803), the National Key Project (No. GJXM92579), the National Natural Science Foundation of China (No. 11901577, 11971481, 12071481), the Natural Science Foundation of Hunan (2020JJ5652), the Defense Science Foundation of China (2021-JCJQ-JJ-0538) and the Research Fund of National University of Defense Technology (No. ZK19-37, ZK18-03-49, ZZKY-JJ-21-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Availability of Data and Materials

Data sharing is not applicable to this article as no datasets were generated or anlyazed during the current study.

Code Availability

Custom code.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Other Properties of pRK

Appendix: Other Properties of pRK

Consider an initial value problem for a system of ordinary differential equations (ODEs) of type

$$\begin{aligned} \left\{ \begin{aligned}&u_t = f(t, u(t)), \quad \forall t \in (0, T], \\&u(0) = u^0, \end{aligned} \right. \end{aligned}$$
(41)

where \(u^0 \in {\mathbb {R}}^N\), \(f: {\mathbb {R}} \times {\mathbb {R}}^N \rightarrow {\mathbb {R}}^N\) such that the problem (41) has a unique solution. Assume that \(\Vert \cdot \Vert : {\mathbb {R}}^N \rightarrow {\mathbb {R}}\) is a convex functional

$$\begin{aligned} \Vert \alpha u + (1 - \alpha ) v \Vert \le \alpha \Vert u \Vert + (1 - \alpha ) \Vert v\Vert , \quad \forall \alpha \in [0, 1], \text {and~} u, v \in \mathbb {R}^N. \end{aligned}$$

We present definitions of several properties [3] relevant for the numerical stability of time integration methods for (41).

Definition 5.1

A method is strong stability preserving/monotone with respect to the functional \(\Vert \cdot \Vert \) if \(\Vert u^{n+1} \Vert \le \Vert u^{n}\Vert , \forall n \ge 0\) under the assumption that

$$\begin{aligned} 0 \le \Vert u + \tau f(t, u)\Vert \le \Vert u\Vert , \quad \forall 0 < \tau \le \tau _{FE}. \end{aligned}$$
(42)

Definition 5.2

(Positivity). A method is positive if, whenever \( u^0 \ge 0\), it guarantees that \( u^{n+1} \ge 0\) under the assumption that

$$\begin{aligned} u+ \tau f(t, u) \ge 0, \quad \forall 0 < \tau \le \tau _{FE}, u \ge 0. \end{aligned}$$
(43)

Definition 5.3

(Range boundedness). A method is range bounded in [mM] if, whenever \(m \le u^0 \le M\), it guarantees that \(m \le u^{n+1} \le M\) under the assumption that

$$\begin{aligned} m \le u + \tau f(t, u) \le M, \quad \forall 0 < \tau \le \tau _{FE}, m \le u \le M. \end{aligned}$$
(44)

Definition 5.4

(Contractivity). A method is contractive if \(\Vert u^{n+1} - v^{n+1}\Vert \le \Vert u^n - v^n\Vert \) under assumption that

$$\begin{aligned} \Vert u - v + \tau ( f(t, u) - f(t, v)) \Vert \le \Vert u - v\Vert , \quad \forall 0 < \tau \le \tau _{FE}. \end{aligned}$$
(45)

By introducing a stabilizing term \(\kappa u\) to the system (41), we have

$$\begin{aligned} u_t = f(t, u(t)) + \kappa u - \kappa u. \end{aligned}$$
(46)

We show that when \(\kappa \ge \frac{1}{\tau _{FE}}\), pRK can unconditionally preserve above properties when f(tu) satisfies assumptions (42) – (45) in Definitions 5.1 – 5.4.

Theorem 5.5

For the system (46) with \(\kappa \ge \frac{1}{\tau _{FE}}\), assume the underlying RK Butcher tableau satisfies Assumption 3.1. Then, the solution obtained from pRK with coefficients \({\hat{d}}_i, {\hat{a}}_{i,j}\) (30) and abscissas \(c_i\), unconditionally preserves properties in Definitions 5.1 – 5.4 for any \(\tau > 0\).

Proof

Consider the preservation of Contractivity 5.4 as an example. Letting \(t_{n, j} = t_n + c_j\) and applying pRK to (46) with different \(u^n\) and \(v^n\) yield

$$\begin{aligned} u_{n, i}&= \frac{1}{\phi _i(c_i \tau \kappa )} [ u^n + \tau \sum _{j = 0}^{i - 1} a_{i,j} \phi _j (c_j \tau \kappa ) ({f}(t_{n, j}, u_{n,j})+\kappa u_{n,j}) ],\quad i = 1, \cdots , s, \end{aligned}$$
(47)
$$\begin{aligned} v_{n, i}&= \frac{1}{\phi _i(c_i \tau \kappa )} [ v^n + \tau \sum _{j = 0}^{i - 1} a_{i,j} \phi _j (c_j \tau \kappa ) ({f}(t_{n, j}, v_{n,j})+\kappa v_{n,j}) ],\quad i = 1, \cdots , s. \end{aligned}$$
(48)

Let \(\kappa := \frac{1}{\tau } \ge \frac{1}{\tau _{FE}}\), multiplying (45) with \(\kappa \) gives the circle condition [27]

$$\begin{aligned} \Vert \kappa (u - v) + f(t_{n, j}, u) - f(t_{n, j}, v) \Vert \le \kappa \Vert u - v\Vert , \quad \forall \kappa \ge \frac{1}{\tau _{FE}}. \end{aligned}$$
(49)

Subtracting (48) from (47) gives

$$\begin{aligned} \begin{aligned} u_{n, i} - v_{n, i} =&\frac{1}{\phi _i(c_i \tau \kappa )}\big ( u^n - v^n + \tau \sum _{j = 0}^{i-1} a_{i,j} \phi _j (c_j \tau \kappa ) [f(t_{n, j}, u_{n, j}) + \kappa u_{n, j} \\&- (f(t_{n, j}, v_{n, j}) + \kappa v_{n, j}) ] \big ), i = 1, \cdots , s. \end{aligned} \end{aligned}$$
(50)

Taking norm on both sides of (50), and applying conditions in Assumption 3.1 and the circle condition (49) give

$$\begin{aligned} \begin{aligned} \Vert u_{n, i} - v_{n, i}\Vert&\le \frac{1}{\phi _i(c_i \tau \kappa )}[ \Vert u^n - v^n\Vert + \tau \kappa \sum _{j = 0}^{i-1} a_{i,j} \phi _j (c_j \tau \kappa ) \Vert u_{n, j} - v_{n, j} \Vert ],\quad i = 1, \cdots , s. \ \end{aligned} \end{aligned}$$

Assuming \(\Vert u_{n, j} - v_{n, j}\Vert \le \Vert u^n - v^n\Vert , j = 1, \cdots , i-1\), by using the third condition in Assumption 3.1, we derive

$$\begin{aligned} \Vert u_{n, i} - v_{n, i}\Vert&\le \frac{1}{\phi _i(c_i \tau \kappa )}[ \Vert u^n - v^n\Vert + \tau \kappa \sum _{j = 0}^{i-1} a_{i,j} \phi _j (c_j \tau \kappa ) \Vert u^n - v^n\Vert ] \\&= \Vert u^n - v^n \Vert ,\quad i \le s. \ \end{aligned}$$

By using mathematical induction, we obtain \(\Vert u^{n+1} - v^{n+1}\Vert \le \Vert u^n - v^n\Vert \). The proofs for preservation of other properties in Definitions 5.1– 5.3 can be performed similarly. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yan, J., Qian, X. et al. Explicit Third-Order Unconditionally Structure-Preserving Schemes for Conservative Allen–Cahn Equations. J Sci Comput 90, 8 (2022). https://doi.org/10.1007/s10915-021-01691-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01691-w

Keywords

Navigation