Skip to main content
Log in

The Homotopy Method for the Complete Solution of Quadratic Two-parameter Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a homotopy method to solve the quadratic two-parameter eigenvalue problems, which arise frequently in the analysis of the asymptotic stability of the delay differential equation. Our method does not require to form coupled generalized eigenvalue problems with Kronecker product type coefficient matrices and thus can avoid the increasing of the computational cost and memory storage. Numerical results and the applications in the delay differential equations are presented to illustrate the effectiveness and efficiency of our method. It appears that our method tends to be more effective than the existing methods in terms of speed, accuracy and memory storage as the problem size grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allgower, E.L., Georg, K.: Introduction to numerical continuation methods, Classics in Applied Mathematics, vol. 45. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2003). Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)]

  2. Bellman, R., Cooke, K.L.: Differential-difference equations. Academic Press, New York-London (1963)

    MATH  Google Scholar 

  3. Beretta, E., Kuang, Y.: Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33(5), 1144–1165 (2002). https://doi.org/10.1137/S0036141000376086

    Article  MathSciNet  MATH  Google Scholar 

  4. Breda, D., Maset, S., Vermiglio, R.: Computing the characteristic roots for delay differential equations. IMA J. Numer. Anal. 24(1), 1–19 (2004). https://doi.org/10.1093/imanum/24.1.1

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J.: On computing the maximal delay intervals for stability of linear delay systems. IEEE Trans. Automat. Control 40(6), 1087–1093 (1995). https://doi.org/10.1109/9.388690

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J.: Corrections to: “On computing the maximal delay intervals for stability of linear delay systems” [IEEE Trans. Automat. Control 40 (1995), no. 6, 1087–1093; MR1345968 (96c:93113)]. IEEE Trans. Automat. Control 45(11), 2198 (2000). https://doi.org/10.1109/TAC.2000.887707

  7. Chen, J., Gu, G., Nett, C.N.: A new method for computing delay margins for stability of linear delay systems. Syst. Control Lett. 26(2), 107–117 (1995). https://doi.org/10.1016/0167-6911(94)00111-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Chow, S.N., Mallet-Paret, J., Yorke, J.A.: A homotopy method for locating all zeros of a system of polynomials. In: Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978), Lecture Notes in Math., vol. 730, pp. 77–88. Springer, Berlin (1979)

  9. Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86(2), 592–627 (1982). https://doi.org/10.1016/0022-247X(82)90243-8

  10. Datko, R.: The Laplace transform and the integral stability of certain linear processes. J. Different. Eq. 48(3), 386–403 (1983). https://doi.org/10.1016/0022-0396(83)90101-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, B., Yu, B., Yu, Y.: A homotopy method for finding all solutions of a multiparameter eigenvalue problem. SIAM J. Matrix Anal. Appl. 37(2), 550–571 (2016). https://doi.org/10.1137/140958396

    Article  MathSciNet  MATH  Google Scholar 

  12. Ergenc, A.F., Olgac, N., Fazelinia, H.: Extended Kronecker summation for cluster treatment of LTI systems with multiple delays. SIAM J. Control Optim. 46(1), 143–155 (2007). https://doi.org/10.1137/06065180X

  13. Fu, P., Niculescu, S.I., Chen, J.: Stability of linear neutral time-delay systems: exact conditions via matrix pencil solutions. IEEE Trans. Automat. Control 51(6), 1063–1069 (2006). https://doi.org/10.1109/TAC.2006.876804

    Article  MathSciNet  MATH  Google Scholar 

  14. Gu, K., Niculescu, S.I.: Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125(2), 158–165 (2003)

    Article  Google Scholar 

  15. Hale, J.K., Verduyn Lunel, S.M.: Introduction to functional-differential equations, Applied Mathematical Sciences, vol. 99. Springer-Verlag, New York (1993). https://doi.org/10.1007/978-1-4612-4342-7. http://dx.doi.org/10.1007/978-1-4612-4342-7

  16. Hammarling, S., Munro, C.J., Tisseur, F.: An algorithm for the complete solution of quadratic eigenvalue problems. ACM Trans. Math. Softw. 39(3), 19 (2013). https://doi.org/10.1145/2450153.2450156

    Article  MathSciNet  MATH  Google Scholar 

  17. Hochstenbach, M.E., Muhič, A., Plestenjak, B.: On linearizations of the quadratic two-parameter eigenvalue problem. Linear Algebra Appl. 436(8), 2725–2743 (2012). https://doi.org/10.1016/j.laa.2011.07.026

    Article  MathSciNet  MATH  Google Scholar 

  18. Hochstenbach, M.E., Muhič, A., Plestenjak, B.: Jacobi-Davidson methods for polynomial two-parameter eigenvalue problems. J. Comput. Appl. Math. 288, 251–263 (2015). https://doi.org/10.1016/j.cam.2015.04.019

    Article  MathSciNet  MATH  Google Scholar 

  19. in’t Hout, K.J., Spijker, M.N.: Stability analysis of numerical methods for delay differential equations. Numer. Math. 59(8), 807–814 (1991). https://doi.org/10.1007/BF01385811

  20. Jarlebring, E.: On critical delays for linear neutral delay systems. In: Proceedings of the European Control Conference, pp. 5639–5644 (2007)

  21. Jarlebring, E.: Critical delays and polynomial eigenvalue problems. J. Comput. Appl. Math. 224(1), 296–306 (2009). https://doi.org/10.1016/j.cam.2008.05.004

    Article  MathSciNet  MATH  Google Scholar 

  22. Jarlebring, E., Hochstenbach, M.E.: Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations. Linear Algebra Appl. 431(3–4), 369–380 (2009). https://doi.org/10.1016/j.laa.2009.02.008

    Article  MathSciNet  MATH  Google Scholar 

  23. Kharitonov, V.L.: Robust stability analysis of time delay systems: A survey. Annu. Rev. Control. 23, 185–196 (1999)

    Article  Google Scholar 

  24. Lin, Y., Bao, L.: Block second-order Krylov subspace methods for large-scale quadratic eigenvalue problems. Appl. Math. Comput. 181(1), 413–422 (2006). https://doi.org/10.1016/j.amc.2005.12.054

    Article  MathSciNet  MATH  Google Scholar 

  25. Louisell, J.: A matrix method for determining the imaginary axis eigenvalues of a delay system. IEEE Trans. Automat. Control 46(12), 2008–2012 (2001). https://doi.org/10.1109/9.975510

    Article  MathSciNet  MATH  Google Scholar 

  26. Michiels, W., Jarlebring, E., Meerbergen, K.: Krylov-based model order reduction of time-delay systems. SIAM J. Matrix Anal. Appl. 32(4), 1399–1421 (2011). https://doi.org/10.1137/100797436

    Article  MathSciNet  MATH  Google Scholar 

  27. Michiels, W., Niculescu, S.I.: Stability and stabilization of time-delay systems, Advances in Design and Control, vol. 12. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2007). https://doi.org/10.1137/1.9780898718645. An eigenvalue-based approach

  28. Muhič, A., Plestenjak, B.: On the singular two-parameter eigenvalue problem. Electron. J. Linear Algebra 18, 420–437 (2009). https://doi.org/10.13001/1081-3810.1322

  29. Muhič, A., Plestenjak, B.: On the quadratic two-parameter eigenvalue problem and its linearization. Linear Algebra Appl. 432(10), 2529–2542 (2010). https://doi.org/10.1016/j.laa.2009.12.022

  30. Müller, R.E.: Discretization of multiparameter eigenvalue problems. Numer. Math. 40(3), 319–328 (1982). https://doi.org/10.1007/BF01396449

    Article  MathSciNet  MATH  Google Scholar 

  31. Niculescu, S.I.: Stability and hyperbolicity of linear systems with delayed state: a matrix-pencil approach. IMA J. Math. Control Inform. 15(4), 331–347 (1998). https://doi.org/10.1093/imamci/15.4.331

    Article  MathSciNet  MATH  Google Scholar 

  32. Niculescu, S.I.: Delay effects on stability. Lecture Notes in Control and Information Sciences, vol. 269. Springer-Verlag, London Ltd, London (2001)

  33. Plestenjak, B.: Multipareig: Toolbox for multiparameter eigenvalue problems. (2014) http://www.mathworks.com/matlabcentral/fileexchange/47844-multipareig

  34. Plestenjak, B.: Numerical methods for nonlinear two-parameter eigenvalue problems. BIT 56(1), 241–262 (2016). https://doi.org/10.1007/s10543-015-0566-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica J. IFAC 39(10), 1667–1694 (2003). https://doi.org/10.1016/S0005-1098(03)00167-5

    Article  MathSciNet  MATH  Google Scholar 

  36. Schreiber, K.: Nonlinear eigenvalue problems: Newton-type methods and nonlinear rayleigh functionals. Ph.D. thesis, TU Berlin, Department of Mathematics (2008)

  37. Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., Van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996). https://doi.org/10.1007/BF01731936 International Linear Algebra Year (Toulouse, 1995)

  38. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001). https://doi.org/10.1137/S0036144500381988

    Article  MathSciNet  MATH  Google Scholar 

  39. Tracy, D.S., Jinadasa, K.G.: Partitioned Kronecker products of matrices and applications. Canad. J. Statist. 17(1), 107–120 (1989). https://doi.org/10.2307/3314768

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and anonymous referees for their careful reading and valuable comments and suggestions that significantly improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Natural Science Foundation of China (Grant No. 11871136) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B. The Homotopy Method for the Complete Solution of Quadratic Two-parameter Eigenvalue Problems. J Sci Comput 90, 18 (2022). https://doi.org/10.1007/s10915-021-01693-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01693-8

Keywords

Mathematics Subject Classification

Navigation