Skip to main content
Log in

Image Multiplicative Denoising Using Adaptive Euler’s Elastica as the Regularization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Variational models involving Euler’s elastica energy have been widely used in many fields of digital image processing, such as image inpainting and additive Gaussian noise removal. In this paper, according to the signal dependence of multiplicative noise, the Euler’s elastica functional is modified to adapt for the multiplicative denoising problem. And a novel multiplicative noise removal model based on adaptive Euler’s elastica is proposed. Furthermore, we develope two fast numerical algorithms to solve this high-order nonlinear model: Aiming at the evolution case of Euler–Lagrange equation, a semi-implicit iterative scheme is designed and the additive operator splitting algorithm is used to speed up the calculation; Expanding the augmented Lagrangian algorithm that has been successfully applied in recent years, we obtain a restricted proximal augmented Lagrangian method. Numerical experiments show the effectiveness of the two algorithms and the significant advantages of our model over the standard total variation denoising model in alleviating the staircase effect and restoring the tiny geometrical structures, especially, the line-like feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Bioucas-Dias, J.M., Figueiredo, M.A.T.: Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 1720–1730 (2010)

    Article  MathSciNet  Google Scholar 

  2. Goodman, J.W.: Some fundamental properties of speckle. J. Opt. Soc. Am. 1917–1983(66), 1145–1150 (1976)

    Article  Google Scholar 

  3. Tur, M., Chin, K.C., Goodman, J.W.: When is speckle noise multiplicative? Appl. Opt. 21, 1157 (1982)

    Article  Google Scholar 

  4. Wagner, R.F., Smith, S.W., Sandrik, J.M., Lopez, H.: Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrasonics 30, 156–163 (1983)

    Article  Google Scholar 

  5. Bamler, R.: Principles of synthetic aperture radar. Surv. Geophys. 21, 147–157 (2000)

    Article  Google Scholar 

  6. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geoence Remote Sens. 50, 606–616 (2012)

    Article  Google Scholar 

  7. Huang, Y.M., Ng, M.K., Wen, Y.W.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009)

    Article  MathSciNet  Google Scholar 

  8. Deledalle, C.A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 18, 1–12 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Dong, Y., Zeng, T.: A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imaging Sci. 6, 1598–1625 (2013)

    Article  MathSciNet  Google Scholar 

  10. Zhao, X.L., Wang, F., Ng, M.K.: A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 7, 456–475 (2014)

    Article  MathSciNet  Google Scholar 

  11. Zhou, Z., Guo, Z., Dong, G., Sun, J., Zhang, D.: A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal. IEEE Trans. Image Process. 24, 249–260 (2015)

    Article  MathSciNet  Google Scholar 

  12. Wang, F., Zhao, X., Ng, M.K.: Multiplicative noise and blur removal by framelet decomposition and \(l_{1}\)-based L-curve method. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 25, 4222–4232 (2016)

    Article  Google Scholar 

  13. Deledalle, C., Denis, L., Tabti, S., Tupin, F.: MuLoG, or how to apply Gaussian denoisers to multi-channel SAR speckle reduction? IEEE Trans. Image Process. 26, 4389–4403 (2017)

    Article  MathSciNet  Google Scholar 

  14. Aubert, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68, 925–946 (2008)

    Article  MathSciNet  Google Scholar 

  15. Chen, L., Liu, X., Wang, X., Zhu, P.: Multiplicative noise removal via nonlocal adaptive dictionary. J. Math. Imaging Vis. 54, 199–215 (2017)

    Article  Google Scholar 

  16. Foucart, S., Rauhut, H.: An Invitation to Compressive Sensing. Springer, New York (2013)

    Book  Google Scholar 

  17. Zhang, J., Chen, K.: A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 8, 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wali, S., Zhang, H., Chang, H., Wu, C.: A new adaptive boosting total generalized variation (TGV) technique for image denoising and inpainting. J. Vis. Commun. Image Represent. 59, 39–51 (2019)

    Article  Google Scholar 

  19. Strong, D.M., Chan, T.: F: Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. Diffusion in Image Processing, UCLA Math Department CAM Report (1996)

  20. Dong, G., Guo, Z., Wu, B.: A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal. Abstract and Applied Analysis, 2013-6-5, 1–21 (2013)

  21. Malik, J.M., Perona, P.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  22. Yao, W., Guo, Z., Sun, J., Wu, B., Gao, H.: Multiplicative noise removal for texture images based on adaptive anisotropic fractional diffusion equations. SIAM J. Imaging Sci. 12, 839–873 (2019)

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Kang, S.H., Chan, T.F.: Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 63, 564–592 (2003)

  24. Guillemot, C., Meur, O.L.: Image inpainting: overview and recent advances. IEEE Signal Process. Mag. 31, 127–144 (2013)

    Article  Google Scholar 

  25. Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57, 414–438 (2013)

  26. Bae, E., Tai, X.C., Zhu, W.: Augmented lagrangian method for an Euler’s elastica based segmentation model that promotes convex contours. Inverse Probl. Imaging 11, 1–23 (2017)

  27. Bae, E., Shi, J., Tai, X.C.: Graph cuts for curvature based image denoising. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 20, 1199–1210 (2011)

    Article  MathSciNet  Google Scholar 

  28. Wali, S., Shakoor, A., Basit, A., Xie, L., Huang, C., Li, C.: An efficient method for Euler’s elastica based image deconvolution. IEEE Access 7, 61226–61239 (2019)

  29. Shi, K., Guo, Z.: On the existence of weak solutions for a curvature driven elliptic system applied to image inpainting. Appl. Math. Lett. 99, 106003 (2019)

    Article  MathSciNet  Google Scholar 

  30. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imag. Sci. 3, 300–339 (2012)

    Article  MathSciNet  Google Scholar 

  31. Goldstein, T.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2, 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  32. Dhingra, N.K., Khong, S.Z., Jovanović, M.R.: The proximal augmented Lagrangian method for nonsmooth composite optimization. IEEE Trans. Autom. Control 64, 2861–2868 (2019)

    Article  MathSciNet  Google Scholar 

  33. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4, 313–344 (2011)

  34. Zhang, J., Chen, R., Deng, C., Wang, S.: Fast linearized augmented Lagrangian method for Euler’s elastica model. Numer. Math. Theory Methods Appl. 10, 98–115 (2017)

  35. Majee, S., Ray, R.K., Majee, A.K.: A gray level indicator-based regularized telegraph diffusion model: application to image despeckling. SIAM J. Imaging Sci. 13, 844–870 (2020)

    Article  MathSciNet  Google Scholar 

  36. Poynton, C.: Digital Video and HD: Algorithms and Interfaces. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  37. Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)

    Article  Google Scholar 

  38. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 10, 1200–1211 (2001)

    Article  MathSciNet  Google Scholar 

  39. Parikh, N., Boyd, S.: Proximal Algorithms. Now Publishers Inc., Hanover (2014)

    Book  Google Scholar 

  40. Hao, X. Hua., Wang, J.H., Meng, F.Y., Pang, L.P.: An adaptive fixed-point proximity algorithm for solving total variation denoising models. Inf. Sci. 402, 69–81 (2017)

    Article  MathSciNet  Google Scholar 

  41. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65, 1817–1837 (2005)

    Article  MathSciNet  Google Scholar 

  42. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  43. Chen, D.Q., Zhou, Y.: Multiplicative denoising based on linearized alternating direction method using discrepancy function constraint. J. Sci. Comput. 60, 483–504 (2014)

    Article  MathSciNet  Google Scholar 

  44. Jeong, T., Woo, H., Yun, S.: Frame-based Poisson image restoration using a proximal linearized alternating direction method. Inverse Probl. 29, 075007 (2013)

    Article  MathSciNet  Google Scholar 

  45. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using L1 fidelity on frame coefficients. J. Math. Imaging Vis. 36, 201–226 (2010)

    Article  Google Scholar 

  46. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 1–14 (2004)

    Article  Google Scholar 

  47. Liu, J., Osher, S.: Block matching local SVD operator based sparsity and TV regularization for image denoising. J. Sci. Comput. 78, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by “the National Natural Science Foundation of China” (Grant Nos. 71773024, 12171123, 11871133, 11971131, U1637208, 61873071, 51476047), “the Natural Science Foundation of Hei longjiang Province of China” (Grant Nos. G2018006, LC2018001), “the Heilongjiang Postdoctoral Spmental Fund” (LBH-Q18064), “Guangdong Basic and Applied Basic Research Foundation” (2020B1515310010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichang Guo.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Availability of Data and Material

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author is supported by “the National Natural Science Foundation of China” (Grant No. 71773024), “the Natural Science Foundation of Heilongjiang Province of China” (Grant No. G2018006), “the Heilongjiang Postdoctoral Scientific Research Developmental Fund” (LBHQ18064). The third author is supported by “the National Natural Science Foundation of China” (Grant Nos. 12171123, 11971131, 11871133), “the Natural Science Foundation of Heilongjiang Province of China” (Grant No. LC2018001), “Guangdong Basic and Applied Basic Research Foundation” (2020B1515310010). The last author is supported by “the National Natural Science Foundation of China” (Grant Nos. 11971131, U1637208, 61873071, 51476047), “Guangdong Basic and Applied Basic Research Foundation” (2020B1515310010)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, S., Guo, Z. et al. Image Multiplicative Denoising Using Adaptive Euler’s Elastica as the Regularization. J Sci Comput 90, 69 (2022). https://doi.org/10.1007/s10915-021-01721-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01721-7

Keywords

Navigation