Skip to main content
Log in

Unconditionally Optimal Error Analysis of a Linear Euler FEM Scheme for the Navier–Stokes Equations with Mass Diffusion

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a linear and decoupled Euler finite element scheme is proposed for solving the 3D incompressible Navier–Stokes equations with mass diffusion numerically by the mini element for the velocity equation and the \(P_2\) conforming element for the density equation. When the time step size \(\tau \) and the mesh size h both are sufficiently small, the proposed FEM algorithm is unconditionally stable at the full discrete level, which is a key issue in designing the efficient algorithm for the multi-physical field problem. Furthermore, optimal temporal-spatial error estimates are presented for the velocity in \(\mathbf{L} ^2\)-norm and the density in \(H^1\)-norm without any constraint of \(\tau \) and h by using the technique of error splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. An, R.: Optimal error estimates of linearized Crank–Nicolson Galerkin method for Landau–Lifshitz equation. J. Sci. Comput. 69, 1–27 (2016)

    Article  MathSciNet  Google Scholar 

  3. An, R., Su, J.: Optimal error estimates of semi-implicit Galerkin method for time-dependent nematic liquid crystal flows. J. Sci. Comput. 74, 979–1008 (2018)

    Article  MathSciNet  Google Scholar 

  4. Araruna, F.D., Braz e Silva, P., Carvalho, R.R., Rojas-Medar, M.A.: On the behavior of Kazhikhov-Smagulov mass diffusion model for vanishing diffusion and viscosity coefficients. J. Math. Phy. 56, 061505 (2016)

    Article  Google Scholar 

  5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer (1994)

  6. Cabrales, R.C., Guillén-González, F., Gutiérrez-Santacreu, J.V.: Stability and convergence for a complete model of mass diffusion. Appl. Numer. Math. 61, 1161–1185 (2011)

    Article  MathSciNet  Google Scholar 

  7. Cai, W.T., Li, B.Y., Li, Y.: Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimsnsions. ESAIM: M2AN 55, S103–S147 (2021)

    Article  Google Scholar 

  8. Cai, X.Y., Liao, L.W., Sun, Y.Z.: Global regularity for the initial value problem of a 2-D Kazhikhov–Smagulov type model. Nonlin. Anal. 75, 5975–5983 (2012)

    Article  MathSciNet  Google Scholar 

  9. Cai, X.Y., Liao, L.W., Sun, Y.Z.: Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov–Smagulov type model. Dis. Contin. Dyn. Syst. S 7, 917–923 (2014)

    Article  MathSciNet  Google Scholar 

  10. Calgaro, C., Ezzoug, M., Zahrouni, E.: Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Commun. Pure Appl. Anal. 17, 429–448 (2018)

    Article  MathSciNet  Google Scholar 

  11. Damázio, P.D., Rojas-Medar, M.A.: On the convergence rate of semi-Galerkin approximations for the equations of viscous fluids in the presence of diffusion. Mat. Contemp. 15, 105–125 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Frank, D.A., Kamenetskii, V.I.: Diffusion and Heat Transfer in Chemical Kinetics. Plenum Press, New York (1969)

    Google Scholar 

  13. Gao, H.D.: Optimal error estimates of a linearized backward Euler FEM for the Landau–Lifshitz equation. SIAM J. Numer. Anal. 52(52), 2574–2593 (2014)

    Article  MathSciNet  Google Scholar 

  14. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin (1986)

    Book  Google Scholar 

  15. Guillén-González, F., Damázio, P., Rojas-Medar, M.A.: Approximation by an iterative method for regular solutions for incompressible fluids with mass diffusion. J. Math. Anal. Appl. 326, 468–487 (2007)

    Article  MathSciNet  Google Scholar 

  16. Guillén-González, F., Gutiérrez-Santacreu, J.V.: unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion. Math. Comput. 77, 1495–1524 (2008)

    Article  MathSciNet  Google Scholar 

  17. Guillén-González, F., Gutiérrez-Santacreu, J.V.: Conditional stability and convergence of a fully discrete scheme for three-dimensional Navier–Stokes equations with mass diffusion. SIAM J. Numer. Math. 46, 2276–2308 (2008)

    Article  MathSciNet  Google Scholar 

  18. Guillén-González, F., Gutiérrez-Santacreu, J.V.: Error estimates of a linear decoupled Euler-FEM scheme for a mass diffusion. Numer. Math. 117, 333–371 (2011)

    Article  MathSciNet  Google Scholar 

  19. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  20. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  21. Kazhikhov, A.V., Smagulov, S.: The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid. Sov. Phys. Dokl. 21, 249–252 (1977)

    MATH  Google Scholar 

  22. Li, B.Y., Qiu, W.F.: A convergent post-processed discontinuous Galerkin method for incompressible flow with variable density. arXiv:2007.13292v1 (2020)

  23. Li, B.Y., Sun, W.W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Inter. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    Article  MathSciNet  Google Scholar 

  25. Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estimates of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  Google Scholar 

  26. Salvi, R.: On the existence of weak solutions of boundary-value problems in a diffusion model of an inhomogeneous liquid in regions with moving boundaries. Portugaliae Math. 43, 213–233 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Gutiérrez-Santacreu, J.V., Rojas-Medar, M.A.: Uniform-in-time error estimates for spectral Galerkin approximations of a mass diffusion model. Math. Comput. 81, 191–218 (2012)

    Article  MathSciNet  Google Scholar 

  28. Secchi, P.: On the initial value problem for the equations of motion of viscous incompressible fluids in the presence of diffusion. Boll. Unione Mat. Ital. Sez. B 6, 1117–1130 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Secchi, P.: On the motion of viscous fluids in the presence of diffusion. SIAM J. Math. Anal. 19, 22–31 (1988)

    Article  MathSciNet  Google Scholar 

  30. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  31. Beirão da Veiga, H.: Diffusion on viscous fluids. Eixstence and asymptotic properties of solutions. Annali della Scuola normale superiore di Pisa Classe di scienze 10, 341–355 (1983)

    MATH  Google Scholar 

  32. Wang, J.L.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11771337) and Natural Science Foundation of Zhejiang Province (No. LY18A010021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong An.

Ethics declarations

Conflict of interest

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., An, R. Unconditionally Optimal Error Analysis of a Linear Euler FEM Scheme for the Navier–Stokes Equations with Mass Diffusion. J Sci Comput 90, 47 (2022). https://doi.org/10.1007/s10915-021-01730-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01730-6

Keywords

Mathematics Subject Classification

Navigation