Skip to main content
Log in

A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen–Cahn Equation with a Nonlocal Lagrange Multiplier

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The conservative Allen–Cahn equation with a nonlocal Lagrange multiplier satisfies mass conservation and energy dissipation property. A challenge to numerically solving the equation is how to treat the nonlinear and nonlocal terms to preserve mass conservation and energy stability without compromising accuracy. To resolve this problem, we first apply the convex splitting idea to not only the term corresponding to the Allen–Cahn equation but also the nonlocal term. A wise implementation of the convex splitting for the nonlocal term ensures numerically exact mass conservation. And we combine the convex splitting with the specially designed implicit–explicit Runge–Kutta method. We show analytically that the scheme is uniquely solvable and unconditionally energy stable by using the fact that the scheme guarantees exact mass conservation. Numerical experiments are presented to demonstrate the accuracy and energy stability of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  3. Baskaran, A., Hu, Z., Lowengrub, J.S., Wang, C., Wise, S.M., Zhou, P.: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation. J. Comput. Phys. 250, 270–292 (2013)

    Article  MathSciNet  Google Scholar 

  4. Beneš, M., Yazaki, S., Kimura, M.: Computational studies of non-local anisotropic Allen–Cahn equation. Math. Bohem. 136, 429–437 (2011)

    Article  MathSciNet  Google Scholar 

  5. Brassel, M., Bretin, E.: A modified phase field approximation for mean curvature flow with conservation of the volume. Math. Meth. Appl. Sci. 34, 1157–1180 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  7. Chen, L.-Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  8. Chen, W., Wang, C., Wang, S., Wang, X., Wise, S.M.: Energy stable numerical schemes for ternary Cahn–Hilliard system. J. Sci. Comput. 84, 27 (2020)

    Article  MathSciNet  Google Scholar 

  9. Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30, 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  10. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 529, 39–46 (1998)

    Article  MathSciNet  Google Scholar 

  11. Hong, Q., Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high order structure-preserving algorithms for the Allen–Cahn model with a nonlocal constraint. Appl. Numer. Math. 170, 321–339 (2021)

    Article  MathSciNet  Google Scholar 

  12. Hu, Z., Wise, S.M., Wang, C., Lowengrub, J.S.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)

    Article  MathSciNet  Google Scholar 

  13. Huang, Z., Lin, G., Ardekani, A.M.: Consistent and conservative scheme for incompressible two-phase flows using the conservative Allen–Cahn model. J. Comput. Phys. 420, 109718 (2020)

    Article  MathSciNet  Google Scholar 

  14. Jeong, D., Kim, J.: Conservative Allen–Cahn–Navier–Stokes system for incompressible two-phase fluid flows. Comput. Fluids 156, 239–246 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jing, X., Li, J., Zhao, X., Wang, Q.: Second order linear energy stable schemes for Allen–Cahn equations with nonlocal constraints. J. Sci. Comput. 80, 500–537 (2019)

    Article  MathSciNet  Google Scholar 

  16. Kim, J., Lee, S., Choi, Y.: A conservative Allen–Cahn equation with a space-time dependent Lagrange multiplier. Int. J. Engrg. Sci. 84, 11–17 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  Google Scholar 

  18. Lee, D.: The numerical solutions for the energy-dissipative and mass-conservative Allen–Cahn equation. Comput. Math. Appl. 80, 263–284 (2020)

    Article  MathSciNet  Google Scholar 

  19. Lee, H.G., Shin, J., Lee, J.-Y.: First- and second-order energy stable methods for the modified phase field crystal equation. Comput. Methods Appl. Mech. Engrg. 321, 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  20. Okumura, M.: A stable and structure-preserving scheme for a non-local Allen–Cahn equation. Japan J. Indust. Appl. Math. 35, 1245–1281 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Rubinstein, J., Sternberg, P.: Nonlocal reaction–diffusion equations and nucleation. IMA J. Appl. Math. 48, 249–264 (1992)

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Yang, X.: An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys. 228, 2978–2992 (2009)

    Article  MathSciNet  Google Scholar 

  24. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MathSciNet  Google Scholar 

  25. Shin, J., Lee, H.G., Lee, J.-Y.: First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 327, 519–542 (2016)

    Article  MathSciNet  Google Scholar 

  26. Shin, J., Lee, H.G., Lee, J.-Y.: Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme. J. Comput. Phys. 347, 367–381 (2017)

    Article  MathSciNet  Google Scholar 

  27. Sun, S., Jing, X., Wang, Q.: Error estimates of energy stable numerical schemes for Allen–Cahn equations with nonlocal constraints. J. Sci. Comput. 79, 593–623 (2019)

    Article  MathSciNet  Google Scholar 

  28. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  29. Yang, X.: A novel fully decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier–Stokes equations coupled with mass-conserved Allen–Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Methods Eng. 122, 1283–1306 (2021)

    MathSciNet  Google Scholar 

  30. Yuan, M., Chen, W., Wang, C., Wise, S.M., Zhang, Z.: An energy stable finite element scheme for the three-component Cahn–Hilliard-type model for macromolecular microsphere composite hydrogels. J. Sci. Comput. 87, 78 (2021)

    Article  MathSciNet  Google Scholar 

  31. Zhai, S., Weng, Z., Feng, X.: Investigations on several numerical methods for the non-local Allen–Cahn equation. Int. J. Heat Mass Transfer 87, 111–118 (2015)

    Article  Google Scholar 

  32. Zhang, Z., Tang, H.: An adaptive phase field method for the mixture of two incompressible fluids. Comput. Fluids 36, 1307–1318 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for the constructive and helpful comments on the revision of this article. This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT of Korea (MSIT) (Nos. 2019R1A6A1A11051177, 2019R1C1C1011112, 2020R1C1C1A01013468).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June-Yub Lee.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.G., Shin, J. & Lee, JY. A High-Order and Unconditionally Energy Stable Scheme for the Conservative Allen–Cahn Equation with a Nonlocal Lagrange Multiplier. J Sci Comput 90, 51 (2022). https://doi.org/10.1007/s10915-021-01735-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01735-1

Keywords

Mathematics Subject Classification

Navigation