Skip to main content
Log in

Optimal Error Estimates of a Time-Spectral Method for Fractional Diffusion Problems with Low Regularity Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper is devoted to the error analysis of a time-spectral algorithm for fractional diffusion problems of order \(\alpha \) (\(0< \alpha < 1\)). The solution regularity in the Sobolev space is revisited and new regularity results in the Besov space are established. A time-spectral algorithm is developed which adopts a standard spectral method and a conforming linear finite element method for temporal and spatial discretizations, respectively. Optimal error estimates are derived with nonsmooth data. Particularly, a sharp temporal convergence rate \(1+2\alpha \) is shown theoretically and numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Abramovitz, A., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

  2. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Guo, B.: Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. Part I: approximability of functions in the weighted Besov spaces. SIAM J. Numer. Anal. 39(5), 1512–1538 (2002)

    MATH  Google Scholar 

  4. Babuška, I., Suri, M.: The optimal convergence rate of the \(p\)-version of the finite element method. SIAM J. Numer. Anal. 24(4), 750–776 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Number 223 in Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer, Berlin (1976)

    Book  Google Scholar 

  6. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

    Book  MATH  Google Scholar 

  7. Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, B., Zhang, Z.: A rational approximation scheme for computing Mittag–Leffler function with discrete elliptic operator as input. J. Sci. Comput. 87(3), 75 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duan, B., Zheng, Z.: An exponentially convergent scheme in time for time fractional diffusion equations with non-smooth initial data. J. Sci. Comput. 80(2), 717–742 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V., Roop, J.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L.: Partial Differential Equations, 2nd. Number 19 in Graduate Studies in Mathematics. American Mathematical Society (2010)

  12. Ford, N., Xiao, J., Yan, Y.: A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14(3), 454–474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ford, N., Yan, Y.: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calc. Appl. Anal. 20(5), 1076–1105 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, G., Sun, H., Sun, Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag–Leffler function \({E}_{\alpha ,\beta }(z)\) and its derivative. Fract. Calc. Appl. Anal. 5(4), 12–15 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Gorenflo, R., Luchko, Y., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  18. Gui, W., Babuška, I.: The \(h, p\) and \(h\)-\(p\) versions of the finite element method in 1 dimension. Part I. The error analysis of the \(p\)-version. Numer. Math. 49(6), 577–612 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35(2), 561–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445–466 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations, 1st. Number 204 in North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  24. Kopteva,N.: Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. arXiv:1905.05070 (2019)

  25. Li, B., Luo, H., Xie, X.: A space-time finite element method for fractional wave problems. Numer. Algorithms 85(3), 1095–1121 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, B., Luo, H., Xie, X.: A time-spectral algorithm for fractional wave problems. J. Sci. Comput. 77(2), 1164–1184 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, B., Luo, H., Xie, X.: Error estimates of a discontinuous Galerkin method for time fractional diffusion problems with nonsmooth data. In: Fractional Calculus and Applied Analysis, accepted. arXiv: 1809.02015 (2018)

  29. Li, B., Wang, T., Xie, X.: Analysis of a temporal discretization for a semilinear fractional diffusion equation. Comput. Math. Appl. 80(10), 2115–2134 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, B., Wang, T., Xie, X.: Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equation with nonsmooth data. J. Sci. Comput. 82, 4 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, B., Wang, T., Xie, X.: Analysis of the L1 scheme for fractional wave equations with nonsmooth data. Comput. Math. Appl. 90, 1–12 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B., Wang, T., Xie, X.: Numerical analysis of two Galerkin discretizations with graded temporal grids for fractional evolution equations. J. Sci. Comput. 85, 3 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, B., Xie, X.: Regularity of solutions to time fractional diffusion equations. Discrete Contin. Dyn. Syst. B 24, 3195–3210 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Li, B., Xie, X., Zhang, S.: A new smoothness result for Caputo-type fractional ordinary differential equations. Appl. Math. Comput. 349, 408–420 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  38. Luchko, Y., Punzi, A.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. GEM Int. J. Geomath. 1(2), 257–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lunardi, A.: Interpolation Theory. Springer, Basel (1995)

    MATH  Google Scholar 

  40. Luo, H., Li, B., Xie, X.: Convergence analysis of a Petrov–Galerkin method for fractional wave problems with nonsmooth data. J. Sci. Comput. 80(2), 957–992 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM 52(2), 123–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52(1), 69–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293(C), 201–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Metzler, R., Glöckle, W., Nonnenmacher, T.: Fractional model equation for anomalous diffusion. Physica A Stat. Mech. Appl. 211(1), 13–24 (1994)

    Article  Google Scholar 

  46. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mittag-Leffler, G.: Sur la nouvelle function \({E}_\alpha \). C. R. Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  48. Mustapha, K.: Time-stepping discontinuous Galerkin methods for fractional diffusion problems. Numer. Math. 130(3), 497–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov–Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52(5), 2512–2529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32(3), 906–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Podlubny, I.: Fractional Differential Equations, Volume 198 of Mathematics in Science and Engineering. Academic Press, Berlin (1999)

    Google Scholar 

  53. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, 1st. Number 23 in Springer Series in Computational Mathematics. Springer, Berlin (2008)

    Google Scholar 

  54. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shen, J., Sheng, C.: An efficient space-time method for time fractional diffusion equation. J. Sci. Comput. 81(2), 1088–1110 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Number 41 in Springer Series in Computational Mathematics. Springer, Heidelberg (2011)

    Book  Google Scholar 

  57. Stein, E., Shakarchi, R.: Functional Analysis-Introduction to Further Topics in Analysis. Number 4 in Princeton Lectures in Analysis. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  58. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Number 3 in Lecture Notes of The Unione Matematica Italiana. Springer, Berlin (2007)

    Google Scholar 

  60. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  61. Wang, Z.-Q., Guo, Y.-L., Yi, L.-J.: An \(hp\)-version Legendre–Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels. Math. Comput. 86(307), 2285–2324 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yan, Y., Khan, M., Ford, N.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yang, Y., Yan, Y., Ford, N.: Some time stepping methods for fractional diffusion problems with nonsmooth data. Comput. Methods Appl. Mat. 18(1), 129–146 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zaslavsky, G.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zheng, M., Liu, F., Turner, I., Anh, V.: A novel high order space-time spectral method for the time fractional Fokker–Planck equation. SIAM J. Sci. Comput. 37(2), A701–A724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 11771312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Xie.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by National Natural Science Foundation of China (12171340, 11771312)

Appendices

A The Shifted Jacobi Polynomial

Given \(a,b>-1\), the family of shifted Jacobi polynomial \(\{S_k^{a,b}\}_{k=0}^\infty \) on (0, T) are defined as follows:

$$\begin{aligned} \mu ^{a,b}(t)S_{k}^{a,b}(t)=\frac{(-1)^{k}}{T^{k} k !} \frac{\,\mathrm{d}^{k}}{\,\mathrm{d}t^{k}}\mu ^{k+a,k+b}(t),\quad 0<t<T, \end{aligned}$$
(79)

where \(\mu ^{\nu ,\theta }(t)=(T-t)^{\nu }t^{\theta }\) for all \(-1<\nu ,\theta <\infty \). Note that (79) is also called Rodrigues’ formula [56], which implies \(\{S_k^{a,b}\}_{k=0}^\infty \) is orthogonal with respect to the weight \(\mu ^{a,b}\) on (0, T), i.e.,

$$\begin{aligned} \left\langle {S_{k}^{a, b},S_{l}^{a, b}} \right\rangle _{\mu ^{a,b}} =\xi _k^{a, b} \delta _{kl}, \end{aligned}$$

where \(\delta _{kl}\) denotes the Kronecker product and

$$\begin{aligned} \xi _k^{a, b}:=\frac{T^{a+b+1} \Gamma (k+a+1) \Gamma (k+b+1)}{(2k+a+b+1) k! \Gamma (k+a+b+1)}. \end{aligned}$$
(80)

As \(\{S_k^{a,b}\}_{k=0}^\infty \) forms a complete orthogonal basis of \(L^2_{\mu ^{a,b}}(0,T)\), any \(v\in L^2_{\mu ^{a,b}}(0,T)\) admits a unique decomposition

$$\begin{aligned} v=\sum _{k=0}^{\infty } v_kS_k^{a,b} \quad \text {with } v_k = \frac{1}{\xi _k^{a,b}} \left\langle {v,S_{k}^{a, b}} \right\rangle _{\mu ^{a,b}}, \end{aligned}$$
(81)

and the \(L^2_{\mu ^{a,b}}\)-orthogonal projection of v onto \(P_M(0,T)\) is defined as \( \Phi _{M}^{a,b}v:= \sum _{k=0}^{M} v_kS_k^{a,b}\). For ease of notation, we shall set \(S_k^a = S_k^{a,a},\,\mu ^{a} = \mu ^{a,a},\,\Phi _M^a = \Phi _M^{a,a}\), and all the superscripts are omitted when \(a = 0\).

Thanks to [7, Lemma 2.5], a standard calculation gives

$$\begin{aligned} {{\,\mathrm{D}\,}}_{0+}^{\theta } S_k^{\beta -\theta ,0} ={}&\frac{ \Gamma (k+1)}{\Gamma (k+1-\theta )}t^{-\theta } S_k^{\beta ,-\theta }(t), \end{aligned}$$
(82)
$$\begin{aligned} {{\,\mathrm{D}\,}}_{T-}^{\theta } S_k^{0,\beta -\theta } ={}&\frac{ \Gamma (k+1)}{\Gamma (k+1-\theta )} (T-t)^{-\theta } S_k^{-\theta ,\beta }(t), \end{aligned}$$
(83)

where \(0<\theta <1\) and \(-1<\beta <\infty \).

Lemma A.1

For any \(v\in H^{\alpha /2}(0,T)\), it holds that

$$\begin{aligned} \left\langle {{{\,\mathrm{D}\,}}_{0+}^{\alpha }(I-\Phi _{M}^{-\alpha ,0})v,q} \right\rangle _{H^{\alpha /2}(0,T)} = 0 \quad \forall \,q\in P_M(0,T). \end{aligned}$$
(84)

Consequently, we have the stability:

$$\begin{aligned} \left|{\Phi _{M}^{-\alpha ,0}v} \right|_{H^{\alpha /2}(0,T)} \leqslant {}C_\alpha \left|{v} \right|_{H^{\alpha /2}(0,T)}, \end{aligned}$$
(85)

and the convergence: \(\lim \limits _{M\rightarrow \infty }|(I-\Phi _{M}^{-\alpha ,0})v|_{H^{\alpha /2}(0,T)} = 0\).

Proof

Given any fixed \(v\in H^{\alpha /2}(0,T)\), by [17, Theorem 1.4.4.3], we know that \(v\in L_{\mu ^{-\alpha ,0}}^2(0,T)\). To prove (84), it is enough to consider \(q = S_{k}^{0,-\alpha }\) for any \(0\leqslant k\leqslant M\). Thanks to (83), we have

$$\begin{aligned} {{\,\mathrm{D}\,}}_{T-}^{\alpha }q = \frac{\Gamma (k+1)}{\Gamma (k+1-\alpha )}(T-t)^{-\alpha }S_k^{-\alpha ,0}. \end{aligned}$$

Again, it follows from [17, Theorem 1.4.4.3] that \( {{\,\mathrm{D}\,}}_{T-}^{\alpha }q\in (H^{\alpha /2}(0,T))^*\). Thus using the definition of \(\Phi _{M}^{-\alpha ,0}\) and Lemma 2.1 gives

$$\begin{aligned} \begin{aligned} \left\langle {{{\,\mathrm{D}\,}}_{0+}^{\alpha }(I-\Phi _{M}^{-\alpha ,0})v,q} \right\rangle _{H^{\alpha /2}(0,T)}&=\left\langle {(I-\Phi _{M}^{-\alpha ,0})v,{{\,\mathrm{D}\,}}_{T-}^{\alpha }q} \right\rangle _{(H^{\alpha /2}(0,T),(H^{\alpha /2}(0,T))^*) }\\&=\frac{\Gamma (k+1)}{\Gamma (k+1-\alpha )}\left\langle {(I-\Phi _{M}^{-\alpha ,0})v,(T-t)^{-\alpha }S_k^{-\alpha ,0}} \right\rangle _{(0,T)}\\&= 0. \end{aligned} \end{aligned}$$

This establishes (84) and by Lemma 2.1, we have

$$\begin{aligned} \begin{aligned} \cos (\alpha \pi /2)\left|{\Phi _{M}^{-\alpha ,0}v} \right|_{H^{\alpha /2}(0,T)}^2&= \left\langle {{{\,\mathrm{D}\,}}_{0+}^{\alpha }\Phi _{M}^{-\alpha ,0}v,\Phi _{M}^{-\alpha ,0}v} \right\rangle _{H^{\alpha /2}(0,T)}\\&=\left\langle {{{\,\mathrm{D}\,}}_{0+}^{\alpha }v,\Phi _{M}^{-\alpha ,0}v} \right\rangle _{H^{\alpha /2}(0,T)}\\&\leqslant \left|{\Phi _{M}^{-\alpha ,0}v} \right|_{H^{\alpha /2}(0,T)} \left|{v} \right|_{H^{\alpha /2}(0,T)}, \end{aligned} \end{aligned}$$

which implies (85).

By (84) and the proof of (85), we find that

$$\begin{aligned} |(I-\Phi _{M}^{-\alpha ,0})v|_{H^{\alpha /2}(0,T)} \leqslant \sec (\alpha \pi /2) |v-q|_{H^{\alpha /2}(0,T)} \quad \forall \,q\in P_M(0,T). \end{aligned}$$

Therefore, a standard density argument leads to

$$\begin{aligned} \lim \limits _{M\rightarrow \infty }|(I-\Phi _{M}^{-\alpha ,0})v|_{H^{\alpha /2}(0,T)} = 0. \end{aligned}$$

This finishes the proof of this lemma. \(\square \)

B Proof of the Commutativity (57)

Let \(\{x_i\}_{i\in {\mathbb {N}}}\) and \(\{y_j\}_{j\in {\mathbb {N}}}\) be the orthonormal basis of X and Y, respectively. Assume \(Ax_i = \sum _{j=0}^{\infty }a_{ij}y_j\) with \(a_{ij}\in \,{{\mathbb {R}}}\) for all \(i\in {\mathbb {N}}\). It is clear that

$$\begin{aligned} \sum _{j=0}^{\infty }\left|{a_{ij}} \right|^2 = \left\Vert {Ax_i} \right\Vert _Y^2\leqslant \left\Vert {A} \right\Vert _{X\rightarrow Y}^2\left\Vert {x_i} \right\Vert _X^2\quad \text { for all }i\in {\mathbb {N}}, \end{aligned}$$
(86)

where \(\left\Vert {A} \right\Vert _{X\rightarrow Y}\) denotes the operator norm of A.

We claim first that by definition, \(\Phi _{M,Z}^{a,b}v_n\overset{n\rightarrow \infty }{\rightarrow } \Phi _{M,Z}^{a,b}v\) in \(L^2_{\mu ^{a,b}}(0,T;Z)\) whenever \(v_n\overset{n\rightarrow \infty }{\rightarrow } v\) in \(L^2_{\mu ^{a,b}}(0,T;Z)\) for \(Z = X\) or Y. Besides, we have the identity

$$\begin{aligned} \left\Vert {w} \right\Vert _{L^2_{\mu ^{a,b}}(0,T;Z)}^2= & {} \sum _{i=0}^{\infty }\left\Vert {w_i} \right\Vert _{L^2_{\mu ^{a,b}}(0,T)}^2 =\int _{0}^{T} \sum _{i=0}^{\infty }\left|{w_i(t)} \right|^2\mu ^{a,b}(t)\,\mathrm{d}t\\= & {} \int _{0}^{T} \left\Vert {w(t)} \right\Vert _{Z}^2\mu ^{a,b}(t)\,\mathrm{d}t, \end{aligned}$$

for all \(w=\sum _{i=0}^{\infty }w_iz_i\in L^2_{\mu ^{a,b}}(0,T;Z)\), where \(z_i=x_i\) or \(y_i\) and we used the monotone convergence theorem (see [6, Theorem 4.1, pp.90]). Based on this, let us verify \(Av_n\rightarrow Av\) in \(L^2_{\mu ^{a,b}}(0,T;Y)\) provided that \(v_n\overset{n\rightarrow \infty }{\rightarrow } v\) in \(L^2_{\mu ^{a,b}}(0,T;X)\). Indeed,

$$\begin{aligned} \begin{aligned} \left\Vert {Av_n-Av} \right\Vert _{L^2_{\mu ^{a,b}}(0,T;Y)}^2&=\int _{0}^{T} \left\Vert {(Av_n-Av)(t)} \right\Vert _{Y}^2\mu ^{a,b}(t)\,\mathrm{d}t\\&\leqslant \left\Vert {A} \right\Vert ^2_{X\rightarrow Y}\int _{0}^{T} \left\Vert {(v_n-v)(t)} \right\Vert _{X}^2\mu ^{a,b}(t)\,\mathrm{d}t \\&=\left\Vert {A} \right\Vert ^2_{X\rightarrow Y}\left\Vert {v-v_n} \right\Vert _{L^2_{\mu ^{a,b}}(0,T;X)}^2. \end{aligned} \end{aligned}$$

Now, we take \(v_n = \sum _{i=0}^{n}v_ix_i\), which converges to v in \(L^2_{\mu ^{a,b}}(0,T;X)\). According to the above discussions, \(\Phi _{M,X}^{a,b}v_n\overset{n\rightarrow \infty }{\rightarrow } \Phi _{M,X}^{a,b}v\) in \(L^2_{\mu ^{a,b}}(0,T;X)\) and \(Av_n\overset{n\rightarrow \infty }{\rightarrow } Av\) in \(L^2_{\mu ^{a,b}}(0,T;Y)\). To prove (57), it is sufficient to establish

$$\begin{aligned} A \Phi _{M,X}^{a,b}v_n = \Phi _{M,Y}^{a,b}Av_n. \end{aligned}$$
(87)

Consider \(\xi _i^m = \sum _{j=0}^{m}a_{ij}y_j\), which converges to \(Ax_i\) by (86) and further implies that

$$\begin{aligned} \sum _{i=0}^{n}\xi _i^m \Phi _{M}^{a,b}v_i \overset{m\rightarrow \infty }{\rightarrow } \sum _{i=0}^{n}Ax_i \Phi _{M}^{a,b}v_i= A \Phi _{M,X}^{a,b}v_n\quad \text {in}\quad L^2_{\mu ^{a,b}}(0,T;Y). \end{aligned}$$
(88)

On the other hand, we find

$$\begin{aligned} \sum _{i=0}^{n}\xi _i^m \Phi _{M}^{a,b}v_i =\sum _{j=0}^{m}\left( \sum _{i=0}^{n}a_{i j} \Phi _{M}^{a,b}v_{i} \right) y_j=\Phi _{M,Y}^{a,b}\sum _{j=0}^{m}\left( \sum _{i=0}^{n}a_{i j} v_{i} \right) y_{j}=\Phi _{M,Y}^{a,b}\sum _{i=0}^{n}v_i\xi _i^m. \end{aligned}$$

Since

$$\begin{aligned} \sum _{i=0}^{n}v_i\xi _i^m\overset{m\rightarrow \infty }{\rightarrow }\sum _{i=0}^{n}v_iAx_i = Av_n\quad \text {in}\quad L^2_{\mu ^{a,b}}(0,T;Y), \end{aligned}$$

we conclude that

$$\begin{aligned} \sum _{i=0}^{n}\xi _i^m \Phi _{M}^{a,b}v_i \overset{m\rightarrow \infty }{\rightarrow } \Phi _{M,Y}^{a,b}Av_n\quad \text {in}\quad L^2_{\mu ^{a,b}}(0,T;Y). \end{aligned}$$

This together with (88) proves (87) and completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Xie, X. Optimal Error Estimates of a Time-Spectral Method for Fractional Diffusion Problems with Low Regularity Data. J Sci Comput 91, 14 (2022). https://doi.org/10.1007/s10915-022-01791-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01791-1

Keywords

Navigation