Skip to main content

Advertisement

Log in

Finite Element Approximations of a Class of Nonlinear Stochastic Wave Equations with Multiplicative Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Wave propagation problems have many applications in physics and engineering, and the stochastic effects are important in accurately modeling them due to the uncertainty of the media. This paper considers and analyzes a fully discrete finite element method for a class of nonlinear stochastic wave equations, where the diffusion term is globally Lipschitz continuous while the drift term is only assumed to satisfy weaker conditions as in Chow (Ann Appl Probab 12(1):361–381, 2002). The novelties of this paper are threefold. First, the error estimates cannot be directly obtained if the numerical scheme in primal form is used. An equivalent numerical scheme in mixed form is therefore utilized and several Hölder continuity results of the strong solution are proved, which are used to establish the error estimates in both \(L^2\) norm and energy norms. Second, two types of discretization of the nonlinear term are proposed to establish the \(L^2\) stability and energy stability results of the discrete solutions. These two types of discretization and proper test functions are designed to overcome the challenges arising from the stochastic scaling in time issues and the nonlinear interaction. These stability results play key roles in proving the probability of the set on which the error estimates hold approaches one. Third, higher moment stability results of the discrete solutions are proved based on an energy argument and the underlying energy decaying property of the method. Numerical experiments are also presented to show the stability results of the discrete solutions and the convergence rates in various norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

All datasets generated during the current study are available from the corresponding author upon reasonable request.

Code Availability

Available upon reasonable request.

References

  1. Adjerid, S., Temimi, H.: A discontinuous Galerkin method for the wave equation. Comput. Methods Appl. Mech. Eng. 200(5–8), 837–849 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anton, R., Cohen, D., Larsson, S., Wang, X.: Full discretization of semilinear stochastic wave equations driven by multiplicative noise. SIAM J. Numer. Anal. 54(2), 1093–1119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209, 129–143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, G.A.: Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13(4), 564–576 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, R.E., Yserentant, H.: On the \(H^1\)-stability of the \(L^2\)-projection onto finite element spaces. Numer. Math. 126(2), 361–381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beiglböck, M., Siorpaes, P.: Others: pathwise versions of the Burkholder–Davis–Gundy inequality. Bernoulli 21(1), 360–373 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burkholder, D.L.: Martingale transforms. Ann. Math. Stat. 37(6), 1494–1504 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burkholder, D.L., Gundy, R.F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124(1), 249–304 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carelli, E., Prohl, A.: Rates of convergence for discretizations of the stochastic incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 50(5), 2467–2496 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou, C.-S., Li, Y., Xiu, D.: Energy conserving Galerkin approximation of two dimensional wave equations with random coefficients. J. Comput. Phys. 381, 52–66 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chow, P.-L.: Stochastic wave equations with polynomial nonlinearity. Ann. Appl. Probab. 12(1), 361–381 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chow, P.-L.: Asymptotics of solutions to semilinear stochastic wave equations. Ann. Appl. Probab. 16(2), 757–789 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chow, P.-L.: Nonlinear stochastic wave equations: blow-up of second moments in L2-norm. Ann. Appl. Probab. 19(6), 2039–2046 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131–2158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47(5), 3820–3848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cohen, D.: Numerical discretisations of stochastic wave equations. AIP Conf. Proc. 1, 020001 (2018)

    Article  Google Scholar 

  18. Cohen, D., Larsson, S., Sigg, M.: A trigonometric method for the linear stochastic wave equation. SIAM J. Numer. Anal. 51(1), 204–222 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cohen, D., Quer-Sardanyons, L.: A fully discrete approximation of the one-dimensional stochastic wave equation. IMA J. Numer. Anal. 36(1), 400–420 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Cui, J., Hong, J., Ji, L., Sun, L.: Energy-preserving exponential integrable numerical method for stochastic cubic wave equation with additive noise. arXiv preprint arXiv:1909.00575 (2019)

  21. Dalang, R.C.: The stochastic wave equation. A minicourse on stochastic partial differential equations. Lecture Notes in Mathematics book series, vol. 1962, pp. 39–71 (2009)

  22. Dalang, R.C., Frangos, N.E.: The stochastic wave equation in two spatial dimensions. Ann. Probab. 26(1), 187–212 (1998)

  23. Davis, B.: On the integrability of the martingale square function. Israel J. Math. 8(2), 187–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dupont, T.: \(L^2\)-estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal. 10(5), 880–889 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Durran, D.R.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Texts in Applied Mathematics, vol. 32. Springer, New York (1999)

    Book  Google Scholar 

  26. Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36(3), 935–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng, X., Li, Y., Prohl, A.: Finite element approximations of the stochastic mean curvature flow of planar curves of graphs. Stoch. PDEs Anal. Comput. 2(1), 54–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, X., Li, Y., Zhang, Y.: Finite element methods for the stochastic Allen–Cahn equation with gradient-type multiplicative noise. SIAM J. Numer. Anal. 55(1), 194–216 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, X., Li, Y., Zhang, Y.: Fully discrete mixed finite element methods for the stochastic Cahn–Hilliard equation with gradient-type multiplicative noise. J. Sci. Comput. 83(1), 1–24 (2020)

    Article  MathSciNet  Google Scholar 

  30. Feng, X., Li, Y., Zhang, Y.: Strong convergence of a fully discrete finite element method for a class of semilinear stochastic partial differential equations with multiplicative noise. J. Comput. Math. arXiv preprint arXiv:1811.05028 (2021)

  31. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3(2), 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Glassey, R.: Blow-up theorems for nonlinear wave equations. Math. Z. 132(3), 183–203 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grote, M.J., Schötzau, D.: Optimal error estimates for the fully discrete interior penalty DG method for the wave equation. J. Sci. Comput. 40(1–3), 257–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gubinelli, M., Koch, H., Oh, T.: Renormalization of the two-dimensional stochastic nonlinear wave equations. Trans. Am. Math. Soc. 370(10), 7335–7359 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hausenblas, E.: Weak approximation of the stochastic wave equation. J. Comput. Appl. Math. 235(1), 33–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hong, J., Hou, B., Sun, L.: Energy-preserving fully-discrete schemes for nonlinear stochastic wave equations with multiplicative noise. arXiv preprint arXiv:2105.14720 (2021)

  39. Kovács, M., Stig, L., Fardin, S.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48(2), 408–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Millet, A., Morien, P.L.: On a stochastic wave equation in two space dimensions: regularity of the solution and its density. Stoch. Process. Appl. 86(1), 141–162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Millet, A., Marta, S.-S.: A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27(2), 803–844 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22(1–3), 443–477 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123(3), 493–536 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Quer-Sardanyons, L., Sanz-Solé, M.: Space semi-discretisations for a stochastic wave equation. Potential Anal. 24(4), 303–332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Reed, M.: Abstract non-linear wave equations. Springer, Berlin-Heidelberg-New York, (1976)

  46. Riviere, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. Contemp. Math. 329(271–282), 4–6 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Safjan, A., Oden, J.: High-order Taylor–Galerkin and adaptive HP methods for second-order hyperbolic systems: application to elastodynamics. Comput. Methods Appl. Mech. Eng. 103(1–2), 187–230 (1993)

    Article  MATH  Google Scholar 

  48. Sun, Z., Xing, Y.: Optimal error estimates of discontinuous Galerkin methods with generalized fluxes for wave equations on unstructured meshes. Math. Comput. 90, 1741–1772 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Walsh, J.B.: On numerical solutions of the stochastic wave equation. Ill. J. Math. 50(1–4), 991–1018 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Xing, Y., Chou, C.-S., Shu, C.-W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Probl. Imaging 7(3), 967–986 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhong, X., Shu, C.-W.: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Eng. 200(41–44), 2814–2827 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Science Foundation under Grant Nos. DMS-2110728 and DMS-1753581, and National Natural Science Foundation of China under Grant No. 11901016.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Yukun Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Yukun Li was partially supported by the NSF Grant DMS-2110728. The work of Shuonan Wu was partially supported by the National Natural Science Foundation of China Grant 11901016 and the startup Grant from Peking University. The work of Yulong Xing was partially supported by the NSF Grant DMS-1753581.

A Proofs of Hölder Continuity

A Proofs of Hölder Continuity

In this Appendix, we prove the Hölder continuity in time for the strong solution u in various norms in Sect. 2.

Proof of Lemma 3

The SPDE (1.1) leads to

$$\begin{aligned} u_t(t) - h_2=\int _0^t\varDelta ud\zeta +\int _0^tf(u)d\zeta +\int _0^tg(u)dW(\zeta ). \end{aligned}$$
(A.1)

Taking the square, the spatial integral, and the expectation on both sides of (A.1), and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

$$\begin{aligned}&\mathbb {E}\big [ \Vert u_t(t)\Vert _{L^2}^2\big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert h_2 \Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t \varDelta u(\zeta )d\zeta \bigr )^2dx\big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t f(u(\zeta ))d\zeta \bigr )^2dx\big ]+C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t g(u(\zeta ))dW(\zeta )\bigr )^2dx\big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert h_2 \Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _0^t\Vert f(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [\int _0^t\Vert g(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert h_2 \Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [ \int _0^t \Vert u(\zeta )\Vert _{L^{2q}}^{2q}d\zeta \big ]+C, \end{aligned}$$
(A.2)

where (1.8) is used in the derivation of the last inequality. For any \(s,t \in [0,T]\) with \(s < t\), we have

$$\begin{aligned} \mathbb {E}\big [ \Vert u(t)-u(s) \Vert _{L^2}^2 \big ] =\mathbb {E}\big [ \Vert u_t(\xi )\Vert _{L^2}^2 \big ] (t-s)^2 \le C(t-s)^2, \end{aligned}$$
(A.3)

where \(\xi \in (s,t)\) and

$$\begin{aligned} C&= C\mathbb {E}\big [ \Vert h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [ \int _0^t \Vert u(\zeta )\Vert _{L^{2q}}^{2q}d\zeta \big ]+C. \end{aligned}$$

This finishes the proof of the lemma. \(\square \)

Proof of Lemma 4

Note that \(v = u_t\). By (1.1), for any \(s,t \in [0,T]\) with \(s < t\), we have

$$\begin{aligned} v(t)-v(s)=\int _s^t\varDelta ud\zeta +\int _s^tf(u)d\zeta +\int _s^tg(u)dW(\zeta ). \end{aligned}$$
(A.4)

Taking the square, the spatial integral, and the expectation on both sides of (A.4), and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

$$\begin{aligned}&\mathbb {E}\big [ \Vert v(t)-v(s) \Vert _{L^2}^2 \big ] \nonumber \\&\quad \le C\mathbb {E}\big [ \int _s^t\Vert \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ](t-s)\nonumber \\&\qquad +C\mathbb {E}\big [ \int _s^t\Vert f(u(\zeta ))\Vert _{L^2}^2d\zeta \big ](t-s)+C\mathbb {E}\big [\int _s^t\Vert g(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]\nonumber ,\\&\quad \le C\mathbb {E}\big [ \int _s^t\Vert \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ](t-s)\nonumber \\&\qquad +C\mathbb {E}\big [ \int _s^t\Vert u(\zeta )\Vert _{L^{2q}}^{2q}d\zeta \big ](t-s)+C\mathbb {E}\big [\int _s^t\Vert u(\zeta )\Vert _{L^2}^2d\zeta \big ]+C(t-s)\nonumber ,\\&\quad \le C(t-s), \end{aligned}$$
(A.5)

where

$$\begin{aligned} C =C\mathbb {E}\big [ \int _s^t\Vert \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [ \int _s^t\Vert u(\zeta )\Vert _{L^{2q}}^{2q}d\zeta \big ]+C\sup _{s \le \zeta \le t}\mathbb {E}\big [\Vert u(\zeta )\Vert _{L^2}^2\big ]+C, \end{aligned}$$

and this finishes the proof of the lemma. \(\square \)

Proof of Lemma 5

From the Eq. (1.1), we get

$$\begin{aligned} u_t(t)-h_2=\int _0^t\varDelta ud\zeta +\int _0^tf(u)d\zeta +\int _0^tg(u)dW(\zeta ). \end{aligned}$$
(A.6)

Taking the gradient, the square, the spatial integral, and the expectation on both sides of (A.6), and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

$$\begin{aligned}&\mathbb {E}\big [ \Vert \nabla u_t(t)\Vert _{L^2}^2\big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert \nabla h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t\nabla \varDelta u(\zeta )d\zeta \bigr )^2dx\big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t\nabla f(u(\zeta ))d\zeta \bigr )^2dx\big ]+C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t\nabla g(u(\zeta ))dW(\zeta )\bigr )^2dx\big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert \nabla h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \nabla \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _0^t\Vert \nabla f(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [\int _0^t\Vert \nabla g(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert \nabla h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \nabla \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _0^t \Vert u(\zeta )\Vert _{L^{4(q-1)}}^{4(q-1)}d\zeta \big ]+C\mathbb {E}\big [\int _0^t\Vert \nabla u(\zeta )\Vert _{L^4}^4d\zeta \big ]+C. \end{aligned}$$
(A.7)

Therefore, for any \(s,t \in [0,T]\) with \(s < t\), we have

$$\begin{aligned} \mathbb {E}\big [ \Vert \nabla (u(t)-u(s)) \Vert _{L^2}^2 \big ] = \mathbb {E}\big [ \Vert \nabla u_t(\xi )\Vert _{L^2}^2 \big ] (t-s)^2 \le C(t-s)^2, \end{aligned}$$
(A.8)

where \(\xi \in (s,t)\) and

$$\begin{aligned} C&= C\mathbb {E}\big [ \Vert h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \nabla \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ] + C\mathbb {E}\big [ \int _0^t \Vert u(\zeta )\Vert _{L^{4(q-1)}}^{4(q-1)}d\zeta \big ]\\&\quad +C\mathbb {E}\big [\int _0^t\Vert \nabla u(\zeta )\Vert _{L^4}^4d\zeta \big ]+C. \end{aligned}$$

This finishes the proof of the lemma. \(\square \)

Proof of Lemma 6

From the SPDE (1.1), for any \(s,t \in [0,T]\) with \(s < t\), we have

$$\begin{aligned} v(t)-v(s)=\int _s^t\varDelta ud\zeta +\int _s^tf(u)d\zeta +\int _s^tg(u)dW(\zeta ). \end{aligned}$$
(A.9)

Taking the gradient, the square, the spatial integral, and the expectation on both sides of (A.6), and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

$$\begin{aligned}&\mathbb {E}\big [ \Vert \nabla (v(t)-v(s)) \Vert _{L^2}^2 \big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \int _s^t\Vert \nabla \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ](t-s)\nonumber \\&\qquad +C\mathbb {E}\big [ \int _s^t\Vert \nabla f(u(\zeta ))\Vert _{L^2}^2d\zeta \big ](t-s)+C\mathbb {E}\big [\int _s^t\Vert \nabla g(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]\nonumber ,\\&\quad \le C\mathbb {E}\big [ \int _s^t\Vert \nabla \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ](t-s)\nonumber \\&\qquad +C\mathbb {E}\big [ \int _s^t \Vert u(\zeta )\Vert _{L^{4(q-1)}}^{4(q-1)}d\zeta \big ](t-s)+C\mathbb {E}\big [\int _s^t\Vert \nabla u(\zeta )\Vert _{L^4}^4d\zeta \big ]+C(t-s)\nonumber ,\\&\quad \le C(t-s), \end{aligned}$$
(A.10)

where

$$\begin{aligned} C&=C\mathbb {E}\big [ \int _s^t\Vert \nabla \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [ \int _s^t \Vert u(\zeta )\Vert _{L^{4(q-1)}}^{4(q-1)}d\zeta \big ]\\&\quad +C\sup _{s \le \zeta \le t}\mathbb {E}\big [\Vert \nabla u(\zeta )\Vert _{L^4}^4\big ]+C. \end{aligned}$$

This finishes the proof of the lemma. \(\square \)

Proof of Lemma 7

Again, from the Eq. (1.1), we get

$$\begin{aligned} u_t(t) - h_2=\int _0^t\varDelta ud\zeta +\int _0^tf(u)d\zeta +\int _0^tg(u)dW(\zeta ). \end{aligned}$$
(A.11)

Taking the Hessian, the square, the spatial integral, and the expectation on both sides of (A.6), and then using the triangle inequality, the Schwarz inequality, and Itô isometry, we obtain

$$\begin{aligned}&\mathbb {E}\big [ \Vert \nabla ^2 u_t(t)\Vert _{L^2}^2\big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert \nabla ^2 h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t\nabla ^2 \varDelta u(\zeta )d\zeta \bigr )^2dx\big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t\nabla ^2 f(u(\zeta ))d\zeta \bigr )^2dx\big ]+C\mathbb {E}\big [ \int _{\mathcal {D}}\bigl (\int _0^t\nabla ^2 g(u(\zeta ))dW(\zeta )\bigr )^2dx\big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert \nabla ^2 h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \nabla ^2 \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _0^t\Vert \nabla ^2 f(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [\int _0^t\Vert \nabla ^2 g(u(\zeta ))\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\quad \le C\mathbb {E}\big [ \Vert \nabla ^2 h_2\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \nabla ^2 \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]\nonumber \\&\qquad +C\mathbb {E}\big [ \int _0^t \Vert u(\zeta )\Vert _{L^{4(q-1)}}^{4(q-1)}d\zeta \big ]+C\mathbb {E}\big [\int _0^t\Vert \nabla ^2 u(\zeta )\Vert _{L^4}^4d\zeta \big ]\nonumber \\&\qquad +C\mathbb {E}\big [\int _0^t\Vert \nabla u(\zeta )\Vert _{L^8}^8d\zeta \big ]+C. \end{aligned}$$
(A.12)

Therefore, for any \(s,t \in [0,T]\) with \(s < t\), we have

$$\begin{aligned} \mathbb {E}\big [ \Vert \nabla ^2 (u(t)-u(s)) \Vert _{L^2}^2 \big ]&= \mathbb {E}\big [ \Vert \nabla ^2 u_t(\xi )\Vert _{L^2}^2 \big ] (t-s)^2\nonumber \\&\le C(t-s)^2, \end{aligned}$$
(A.13)

where \(\xi \in (s,t)\) and

$$\begin{aligned} C&= C\mathbb {E}\big [ \Vert \nabla ^2 u_t(0)\Vert _{L^2}^2\big ]+C\mathbb {E}\big [ \int _0^t\Vert \nabla ^2 \varDelta u(\zeta )\Vert _{L^2}^2d\zeta \big ]+C\mathbb {E}\big [ \int _0^t \Vert u(\zeta )\Vert _{L^{4(q-1)}}^{4(q-1)}d\zeta \big ]\\&\quad +C\mathbb {E}\big [\int _0^t\Vert \nabla ^2 u(\zeta )\Vert _{L^4}^4d\zeta \big ]+C\mathbb {E}\big [\int _0^t\Vert \nabla u(\zeta )\Vert _{L^8}^8d\zeta \big ]+C. \end{aligned}$$

This finishes the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, S. & Xing, Y. Finite Element Approximations of a Class of Nonlinear Stochastic Wave Equations with Multiplicative Noise. J Sci Comput 91, 53 (2022). https://doi.org/10.1007/s10915-022-01816-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01816-9

Keywords

Mathematics Subject Classification

Navigation