Skip to main content
Log in

Convergence Analysis of the Fully Discrete Hybridizable Discontinuous Galerkin Method for the Allen–Cahn Equation Based on the Invariant Energy Quadratization Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a fully discrete scheme to solve the well-known Allen–Cahn equation, where space is discretized by the hybridizable discontinuous Galerkin method, and the time discretization is based on the newly developed Invariant Energy Quadratization approach. At each time step, the scheme results in a linear and uniquely solvable algebraic system. The scheme is shown to be unconditionally energy stable, and the optimal error estimates are rigorously established. Some numerical examples are presented to illustrate the temporal and spatial order of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Chen, C., Yang, X.: Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J. Comput. Phys. 388, 41–62 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C., Yang, X.: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic cahn-hilliard model. Comput. Meth. Appl. Mech. Eng. 351, 35–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (msav) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40(6), A3982–A4006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Choi, J.-W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allencahn equation. Phys. A Stat. Mech. Appl. 388(9), 1791–1803 (2009)

    Article  Google Scholar 

  6. Cockburn, B., Dong, B., Guzmán, J.: A hybridizable and superconvergent discontinuous galerkin method for biharmonic problems. J. Sci. Comput. 40(1–3), 141–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous galerkin, mixed, and continuous galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Gopalakrishnan, J., Sayas, F.: A projection-based error analysis of hdg methods. Math. Comput. 79(271), 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Singler, J., Zhang, Y.: Interpolatory hdg method for parabolic semilinear pdes. J. Sci. Comput. 79(3), 1777–1800 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dobrosotskaya, J., Bertozzi, A.: A wavelet-laplace variational technique for image deconvolution and inpainting. IEEE Trans. Image Process. 17(5), 657–663 (2008)

    Article  MathSciNet  Google Scholar 

  11. Dong, H., Wang, B., Xie, Z., Wang, L.-L.: An unfitted hybridizable discontinuous galerkin method for the poisson interface problem and its error analysis. IMA J. Numer. Anal. 37(1), 444–476 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, X., Li, Y.: Analysis of symmetric interior penalty discontinuous galerkin methods for the allen-cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35(4), 1622–1651 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, X., Prohl, A.: Numerical analysis of the allen-cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernandez, P., Nguyen, N.C., Peraire, J.: The hybridized discontinuous galerkin method for implicit large-eddy simulation of transitional turbulent flows. J. Comput. Phys. 336, 308–329 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous galerkin with degree adaptivity for the incompressible navier-stokes equations. Comput. Fluids 98, 196–208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gokieli, M., Marcinkowski, L.: Modelling phase transitions in alloys. Nonlinear Anal. Theory Methods Appl. 63(5–7), e1143–e1153 (2005)

    Article  MATH  Google Scholar 

  17. Gong, Y., Zhao, J., Yang, X., Wang, Q.: Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities. SIAM J. Sci. Comput. 40(1), B138–B167 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guan, Z., Lowengrub, J., Wang, C., Wise, S.: Second order convex splitting schemes for periodic nonlocal cahn-hilliard and allen-cahn equations. J. Comput. Phys. 277, 48–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, R., Ji, L., Xu, Y.: High order local discontinuous galerkin methods for the allen-cahn equation: analysis and simulation. J. Comput. Math. 34(2), 135–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karasozen, B., Sariaydin-Filibelioglu, A., Uzunca, M., Yucel, H.: Energy stable discontinuous Galerkin finite element method for the Allen-Cahn equation. Int. J. Comput. Methods 1503, 1850013 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a galerkin-mixed fem for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations. Math. Meth. Appl. Sci. 38(18), 4564–4575 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, N.C., Cockburn, B., Peraire, J.: Hybridizable discontinuous galerkin methods for the time-harmonic maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nguyen, N.C., Peraire, J.: Hybridizable discontinuous galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Paipuri, M., Fernández-Méndez, S., Tiago, C.: Comparison of high-order continuous and hybridizable discontinuous galerkin methods for incompressible fluid flow problems. Math. Comput. Simul. 153, 35–58 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab., N. Mex.(USA), (1973)

  28. Sheldon, J., Miller, S., Pitt, J.: A hybridizable discontinuous galerkin method for modeling fluid-structure interaction. J. Comput. Phys. 326, 91–114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J., Yang, X.: Numerical approximations of allen-cahn and cahn-hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shin, J., Lee, H., Lee, J.: Unconditionally stable methods for gradient flow using convex splitting runge-kutta scheme. J. Comput. Phys. 347, 367–381 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ueckermann, M.P., Lermusiaux, P.: Hybridizable discontinuous galerkin projection methods for navier-stokes and boussinesq equations. J. Comput. Phys. 306, 390–421 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vidal-Codina, F., Nguyen, N.C., Oh, S.-H., Peraire, J.: A hybridizable discontinuous galerkin method for computing nonlocal electromagnetic effects in three-dimensional metallic nanostructures. J. Comput. Phys. 355, 548–565 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, B., Khoo, B.C.: Hybridizable discontinuous galerkin method (hdg) for stokes interface flow. J. Comput. Phys. 247, 262–278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wheeler, A., Boettinger, W., McFadden, G.: Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45(10), 7424 (1992)

    Article  Google Scholar 

  36. Xia, Y., Xu, Y., Shu, C.: Application of the local discontinuous galerkin method for the allen-cahn/cahn-hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Xiao, X., Feng, X., Yuan, J.: The stabilized semi-implicit finite element method for the surface allen-cahn equation. Discrete Contin. Dyn. Syst. Ser. B 22(7), 2857 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Xu, Z., Yang, X., Zhang, H., Xie, Z.: Efficient and linear schemes for anisotropic cahn-hilliard model using the stabilized-invariant energy quadratization (s-ieq) approach. Comput. Phys. Commun. 238, 36–49 (2019)

    Article  MathSciNet  Google Scholar 

  39. Yang, X.: Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X.: Efficient Linear, stabilized, second order time marching schemes for an anisotropic phase field dendritic crystal growth model. Comput. Meth. Appl. Mech. Engrg. 347, 316–339 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, X., Yu, H.: Efficient Second Order Unconditionally Stable Schemes for a Phase Field Moving Contact Line Model Using an Invariant Energy Quadratization Approach. SIAM J. Sci. Comput. 40, B889–B914 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, X., Zhang, G.: Convergence analysis for the invariant energy quadratization (ieq) schemes for solving the cahn-hilliard and allen-cahn equations with general nonlinear potential. J. Sci. Comput. 82, 55 (2020)

  43. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy Quadratization method. M3AS Math. Models Methods Appl. Sci. 27, 1993–2030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, J., Chen, C., Wang, J., Yang, X.: Efficient, second oder accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system. Comput. Phys. Commun., p 107122, (2019)

  45. Zhang, J., Chen, C., Yang, X.: A novel Decoupled and stable scheme for an anisotropic phase-field dendritic crystal growth model. Appl. Math. Lett. 95, 122–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, J., Yang, X.: Unconditionally energy stable large time stepping method for the l2-gradient flow based ternary phase-field model with precise nonlocal volume conservation. Comput. Meth. Appl. Mech. Eng. 361, 112743 (2020)

    Article  MATH  Google Scholar 

  47. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110(3), 279–300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38(5), A3264–A3290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for the valuable comments and constructive suggestions to improve this paper.

Funding

The work of J. Wang was supported by the National Natural Science Foundation of China (Grant No. 11801171). The work of K. Pan was supported by the National Natural Science Foundation of China (Grant No. 41874086) and Science Challenge Project (Grant No. TZ2016002). The work of X. Yang was partially supported by National Science Foundation of USA with grant number DMS-2012490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Pan, K. & Yang, X. Convergence Analysis of the Fully Discrete Hybridizable Discontinuous Galerkin Method for the Allen–Cahn Equation Based on the Invariant Energy Quadratization Approach. J Sci Comput 91, 49 (2022). https://doi.org/10.1007/s10915-022-01822-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01822-x

Keywords

Mathematics Subject Classification

Navigation