Skip to main content
Log in

A Finite Volume Method for the 3D Lagrangian Ideal Compressible Magnetohydrodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a cell-centered Lagrangian scheme for solving the three dimensional ideal magnetohydrodynamics (MHD) equations on unstructured meshes. The physical conservation laws are compatibly discretized on the unstructured meshes to satisfy the geometric conservation law (GCL). By introducing a generalized Lagrange multiplier, the magnetic divergence constraint is coupled with the conservation laws hence the magnetic divergence errors can dissipate and transport to the domain boundaries. Invoking the Galilean invariance, magnetic flux conservation and the thermodynamic consistency, the nodal approximate Riemann solver is derived and the corresponding first order finite volume scheme is then constructed. The piecewise linear spatial reconstruction and two step predictor corrector time integration are then adopted to increase the accuracy of the scheme. Various numerical tests are presented to assert the robustness and accuracy of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brio, M., Wu, C.C.: An upwind difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400–422 (1988)

    Article  MathSciNet  Google Scholar 

  2. Dai, W., Woodward, P.R.: An approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 111, 354–372 (1994)

    Article  Google Scholar 

  3. Dai, W., Woodward, P.R.: A simple finite difference scheme for multidimensional magnetohydrodynamical equations. J. Comput. Phys. 142, 331–369 (1998)

    Article  MathSciNet  Google Scholar 

  4. Jiang, G.S., Wu, C.C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150, 561–594 (1999)

    Article  MathSciNet  Google Scholar 

  5. Stone, J.M., Norman, M.L.: ZUES-2D: a radiation magnetohydrodynamics code for astrophysical flow in two space dimensions: the magnetohydrodynamics algorithms and tests. Astrophys. J. Suppl 80, 791–818 (1992)

    Article  Google Scholar 

  6. Zachary, A.L., Malagoli, A., Colella, P.: A higher-order Godunov method for multidimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput. 15, 263–294 (1994)

    Article  MathSciNet  Google Scholar 

  7. Tanaka, T.: Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulations of inhomogeneous systems including strong background potential field. J. Comput. Phys. 111, 381–389 (1995)

    Article  Google Scholar 

  8. Myong, R.S., Roe, P.L.: On Godunov-type schemes for magnetohydrodynamics. J. Comput. Phys. 147, 545–567 (1998)

    Article  MathSciNet  Google Scholar 

  9. Assous, F., Degond, P., Heintze, E., Raviart, P.A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222 (1993)

    Article  MathSciNet  Google Scholar 

  10. Warburton, T.C., Karniadakis, G.E.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 608–641 (1999)

    Article  MathSciNet  Google Scholar 

  11. Li, F., Shu, C.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22, 413–442 (2005)

    Article  MathSciNet  Google Scholar 

  12. Stone, J.M., Gardiner, T.A., Teuben, P., Hawley, J.F., Simon, J.B.: Athena: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178, 137–177 (2008)

    Article  Google Scholar 

  13. Toth, G., Odstrcil, D.: Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydro-dynamic problems. J. Comput. Phys. 128, 82–100 (1996)

    Article  Google Scholar 

  14. Wesenburg, M.: Efficient MHD Riemann solvers for simulations on unstructured triangular grids. J. Numer. Math. 10, 37–71 (2002)

    MathSciNet  Google Scholar 

  15. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)

    Article  MathSciNet  Google Scholar 

  16. Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2012)

    Article  MathSciNet  Google Scholar 

  17. Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure. Part 1—application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014)

    Article  MathSciNet  Google Scholar 

  18. Boscheri, W., Balsara, D.S., Dumbser, M.: Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. J. Comput. Phys. 267, 112–138 (2014)

    Article  MathSciNet  Google Scholar 

  19. Balsara, D.S.: Three dimensional HLL Riemann solver for conservation laws on structured meshes: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 295, 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  20. Boscheri, W., Dumbser, M., Balsara, D.S.: High order Lagrangian ADER-WENO schemes on unstructured meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. Int. J. Numer. Meth. Fluids 00, 1–34 (2012)

    Google Scholar 

  21. Boscheri, W., Dumbser, M.: A direct Arbitrary–Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservativehyperbolic systems in 3D. J. Comput. Phys. 275, 484–523 (2014)

    Article  MathSciNet  Google Scholar 

  22. Christlieb, A.J., Feng, X., Seal, D.C., Tang, Q.: A high-order positity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. J. Comput. Phys. 316, 218–242 (2016)

    Article  MathSciNet  Google Scholar 

  23. Georges, G., Breil, J., Maire, P.H.: A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations. J. Comput. Phys. 305, 921–941 (2016)

    Article  MathSciNet  Google Scholar 

  24. Loubére, R., Maire, P.H., Vachal, P.: 3D staggered Lagrangian hydrodynamics scheme with cell-centered Riemann solver-based artificial viscosity. Int. J. Numer. Meth. Fluids 72, 22–42 (2013)

    Article  MathSciNet  Google Scholar 

  25. Xu, X., Dai, Z., Gao, Z.: A 3D cell-centered Lagrangian scheme for the ideal Magnetohydrodynamics equations on unstructured meshes. Comput. Methods Appl. Mech. Eng. 342, 490–508 (2018)

    Article  MathSciNet  Google Scholar 

  26. Xu, X., Gao, Z., Dai, Z.: A 3D staggered Lagrangian scheme for the ideal Magnetohydrodynamics equations on unstructured meshes. Int. J. Numer. Meth. Fluids 90, 584–602 (2019)

    Article  Google Scholar 

  27. Caramana, E., Burton, D.E., Shashkov, M.J., Whalen, P.: The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146, 227–262 (1998)

    Article  MathSciNet  Google Scholar 

  28. Caramana, E., Shashkov, M.J.: Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures. J. Comput. Phys. 142, 521–561 (1998)

    Article  MathSciNet  Google Scholar 

  29. Maire, P.H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional compressible flows problems. SIAM J. Sci. Comput. 29, 1782–1824 (2007)

    Article  MathSciNet  Google Scholar 

  30. Carre, G., Pino, S.D., Despres, B., Labourasse, E.: A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys. 228, 5160–5183 (2009)

    Article  MathSciNet  Google Scholar 

  31. Brackbill, J.U., Barnes, D.C.: The effect of nonzero \(\nabla \cdot \mathbf{B}\) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)

    Article  MathSciNet  Google Scholar 

  32. Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). ICASE-Report 94-24, NASA Langley Research Center, Hampton, VA23681-0001 (1994)

  33. Dedner, A., Kemm, F., Kroner, D., et al.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  MathSciNet  Google Scholar 

  34. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659–677 (1988)

    Article  Google Scholar 

  35. Toth, G.: The \(\nabla \cdot \mathbf{B}=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)

    Article  MathSciNet  Google Scholar 

  36. Munz, C.D., Schneider, R., Sonnendrucker, E., Voss, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000)

    Article  MathSciNet  Google Scholar 

  37. Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. In: AIAA Paper 89-0366 (1989)

  38. Ryu, D., Jones, T.W.: Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys. J. 442, 228–258 (1995)

    Article  Google Scholar 

  39. Balsara, D.S., Spicer, D.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  MathSciNet  Google Scholar 

  40. Gardiner, T.A., Stone, J.M.: An unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys. 205, 509–539 (2005)

    Article  MathSciNet  Google Scholar 

  41. Balsara, D.S.: Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149–184 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would thank the anonymous reviewers for their thoughtful comments and useful suggestions. The authors are partially supported by NSFC (NO. 11171154, 11671050, 11771055, 11771053) and the Foundation of CAEP(CX20210044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxi Ni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ni, G. A Finite Volume Method for the 3D Lagrangian Ideal Compressible Magnetohydrodynamics. J Sci Comput 91, 73 (2022). https://doi.org/10.1007/s10915-022-01851-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01851-6

Keywords

Mathematics Subject Classification

Navigation