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Abstract

We present an asymptotic preserving method for the radiative transfer equations in the framework
of PN method. An implicit and explicit numerical scheme is proposed to solve the PN system based
on the order analysis of the expansion coefficients of the specific intensity, where the order of each
expansion coefficient is derived by the Chapman-Enskog method. The coefficients at higher-order
are treated explicitly while those at lower-order are treated implicitly in each equation of the PN

system. Energy inequality is proved for this numerical scheme. Several numerical examples validate
the efficiency of this scheme in both optically thick and thin regions.
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1 Introduction

Radiation plays an important role in thermal radiative transfer in inertial confinement fusion. Thermal
radiative transfer is an intrinsic component of coupled radiation-hydrodynamic problems [31], and the
radiative transfer equations (RTE) are adopted to describe the energy exchange between different mate-
rials in the system. However, this system is of high dimensionality. Generally, there are all together seven
independent variables in the system, such as the position in the physical space, angle in the phase space,
frequency and time, which will lead to high computational cost [20]. At the same time, the radiation
travels at the speed of light, which imposes a quite restrictive limit on the time-step size. Solving the
RTE system numerically is a challenging problem [43].

Generally speaking, there are two kinds of methods to solve this system, the stochastic and deter-
ministic methods. One of the popular stochastic methods is the implicit Monte Carlo (IMC) method [7],
which is efficient in optically thin regions, but needs quite a large amount of particles in the optically thick
regions, making it quite expensive [7]. Moreover, though there is no ray effect in the stochastic method,
it suffers from the statistical noise which will also make this method inefficient [7]. Several efforts have
been made to improve the efficiency of IMC method, such as [8, 3, 4, 38], which we will not discuss in
detail here. Recently, a series of unified gas-kinetic schemes (unified gas-kinetic particle method (UGKP)
[42] and unified gas-kinetic wave particle method (UGKWP) [28]) are proposed to solve RTE system,
where a particle-based Monte Carlo solver is proposed to track the non-equilibrium transport. For the
deterministic methods, the discrete-ordinates (SN ) method is often adopted [18, 25]. In this method,
the transport equation is solved along particular directions and the energy density is reconstructed using
a quadrature rule. SN method has been studied for many years and several efforts have been made to
improve the efficiency of this method [46]. However, SN methods suffer from ray-effects [36, 30], which
will lead to the phenomenon of hot spot in the simulation.

Another deterministic method is the spherical harmonics (PN ) method [16, 27]. In the framework of
PN method, the specific intensity of radiation is approximated by a series expansion of polynomials in the
angular space. PN method, which is one of the spectral methods, may have high approximate efficiency,
and also preserves the property of rational invariance. However, for the cases that the interactions with
the material are rare, PN method may lead to non-physical oscillations or even negative energy density
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solution [33]. Several attempts are made to correct the negativity in PN equations, such as adding
artificial scattering terms [37] or adding filter which is also known as the filtered PN method [32, 20].
Besides, for both PN and SN methods, due to the fact that photons transport at an extremely fast speed,
we usually have to treat the transport term implicitly when employing time discretization. Moreover, in
the optically thick regime, the photon’s mean free path is quite small. Thus, the spatial mesh size, which
should be comparable to the photon’s mean free path, is also very small and will lead to very expensive
computational cost [43].

The asymptotic preserving (AP) scheme for the kinetic equation solves this problem by capturing
the asymptotic limit of the kinetic equation on the discrete level without the need to resolve small scales
[13, 14, 15]. A scheme is called an AP scheme if its asymptotic limit as the mean free path goes to
zero with the time step and mesh size fixed becomes a consistent and stable discretization of the limit
macroscopic equation (for the radiative transfer equation, the limiting equation is a diffusion equation)
[17, 22, 23, 35]. In the simulation of the steady neutron transport problems, where the AP schemes were
first studied, some work has been done, such as those by Larsen, etc. [22, 23] and Jin, etc. [13, 14].
Then, the AP schemes were later applied to the unsteady problems, where several kinds of AP schemes
were developed. In [26], the micro-macro decomposition is utilized to split the distribution function,
and the implicit-explicit (IMEX) scheme is applied for the time discretization, where the discontinuous
Galerkin discretization is adopted in the spatial space [48, 47, 39], and the finite difference discretization
is utilized in [21]. In [43, 44], the UGKS method with AP property is developed for the radiative transfer
equations, where a linearized iterative solver for the temperature is utilized. In [45], the three-state
update is adopted to capture the correct front propagation in the diffusion limit. Moreover, the Eulerian
method for the equilibrium part combined with a Monte Carlo solver for the perturbation was proposed
in [2]. In [9], the multiscale high/low order (HOLO) method is utilized to build the AP scheme [29], where
the higher-order S-stable diagonally implicit RK method with the linearization of the Planck function
is applied. In this paper, we will develop an AP scheme for the gray approximation to the radiation
transfer equations in the framework of PN method. The specific intensity is first approximated by a series
expansion of the basis functions. Then, the Chapman-Enskog expansion is utilized to get the order of the
expansion coefficients with respect to a parameter ε, which is the typical mean free path divided by the
macroscopic length scale, based on which an implicit-explicit scheme is designed for PN system. In this
scheme, the terms at higher-order of ε are solved explicitly with those at lower-order solved implicitly in
each equation of the PN system. In this case, the implicit-explicit PN system is changed into a pseudo
implicit system, which could be solved at the computational cost of an explicit scheme. Moreover, the
energy exchange term is solved implicitly, which will greatly release the restriction on the time step
length. The equation for the material energy is solved coupled with PN system, which is reduced into a
fourth degree polynomial equation.

The numerical properties of the new scheme are also studied in this work, including the stability
property and the AP property. The stability properties of the numerical scheme are studied by the
Fourier analysis and the energy stability analysis. As to the AP property, when the parameter ε goes
to zero, the resulting PN system is reduced into a finite difference scheme for the material temperature.
Numerical examples are tested first to validate the AP property of this numerical scheme. The classical
Marshak wave problems in 1D spatial space and the lattice problem and the hohlraum problem in 2D
spatial space are tested to verify the efficiency of this numerical scheme.

The rest of this paper is organized as follows: Section 2 will introduce the RTE system and PN
method. The AP IMEX method is presented and discussed in detail in Section 3, with the AP property
and energy stability proved in Section 4. Several numerical examples will be exhibited in Section 5.
The conclusion and future work will be stated in Section 6. PN system for the 1D RTE system and the
boundary conditions are discussed in Appendix A.1 and A.2, respectively. The Fourier analysis of the
numerical scheme and the proof of energy stability are discussed in Appendix A.3 and A.4, respectively.

2 Radiative transfer equations and PN method

In the absence of hydrodynamic motion and heat conduction, the radiative transfer equations (RTE) are
composed by a transport equation of the specific intensity and the associated energy balance equation.
In this section, we will introduce the gray approximation to the radiative transfer equations and the PN
method, which is one of the most popular numerical methods to solve RTE.
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2.1 The gray approximation to radiative transfer equations

The radiative transfer and the energy exchange between radiation and material are described by the gray
approximation to the radiative transfer equations, which have the form below:

ε2

c

∂I

∂t
+ εΩ · ∇I = σ

(
1

4π
acT 4 − I

)
, (2.1a)

ε2Cv
∂T

∂t
≡ ε2 ∂U

∂t
= σ

(∫
S2
I dΩ− acT 4

)
. (2.1b)

Here I(x, t,Ω) is the specific intensity of radiation. Ω is the angular variable which lies on S2, the
surface of the unit sphere. x = (x, y, z) is the spatial variable, and σ(x, T ) is the opacity. ε is the ratio
between the typical mean free path and the macroscopic length scale [35], which plays a similar role to
the Knudsen number in the rarefied gas dynamics. In (2.1), the external source and scattering terms
are omitted. T (x, t) is the material temperature and c is the speed of light. a is the radiation constant
given by

a =
8πk4

15h3c3
, (2.2)

where h is Planck’s constant while k is Boltzmann constant.
The relationship between the material temperature T (x, t) and the material energy density U(x, t)

is
∂U

∂T
= Cv > 0, (2.3)

where Cv(x, t) is the heat capacity. Integrating (2.1a) against Ω, and together with (2.1b), we can get
the conservation of energy

ε2Cv
∂T

∂t
+ ε2

∂E

∂t
+ ε

∫
S2

Ω · ∇I dΩ = 0, (2.4)

where E is the energy density defined as

E =
1

c

∫
S2
I dΩ. (2.5)

The total energy is then defined as
E = U + E. (2.6)

When ε goes to zero, the specific intensity I goes to a Planckian at the local temperature [44, 43], and
the corresponding local temperature T (0) satisfies the nonlinear diffusion equation

∂U(T (0))

∂t
+ a

∂

∂t

(
T (0)

)4

= ∇ · ac
3σ
∇
(
T (0)

)4

, I(0) = ac
(
T (0)

)4

. (2.7)

In this approximation, the radiative flux F (t,x) is related to the material temperature by the Fick’s law
of diffusion given by

F (t,x) =

∫
S2

ΩI dΩ = − ac
3σ
∇T 4. (2.8)

Moreover, at this time the total energy (2.6) is expressed as

E = U (0) + a
(
T (0)

)4

. (2.9)

When there is no energy exchange between the specific intensity and the material, we get another form
of the radiative transfer equation [41, 35] as

ε2

c

∂I

∂t
+ εΩ · ∇I = σ

(
1

4π

∫
I dΩ− I

)
, (2.10)

where the linear operator 1
4π

∫
I dΩ− I models the scattering of the particles by the medium [35].

Direct simulation of the radiative transfer equations (2.1) is costly for several reasons. First, the
independent variables of (2.1) are position, angle, and time, which are usually seven-dimensional, making
it expensive to simulate. Then, radiation travels at the speed of light, which makes the limit on the
time-step length for time-explicit schemes quite restrictive. Finally, when the parameter ε is small, (2.1)
contains stiff source terms, leading to stringent restrictions on the time step for time-explicit schemes as
well. On the other hand, (2.1) goes to the diffusion limit (2.7) as ε approaches zero, which requires us
to construct the asymptotic-preserving (AP) schemes to solve this problem [15, 14].
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2.2 PN system

The PN method approximates the angular dependence of (2.1) by a series expansion of the spherical
harmonics function. The moments of the specific intensity is defined as

Iml (t,x) = 2
√
π

∫
S2
Y
m

l (Ω)I(t,x,Ω) dΩ, (2.11)

where Y ml (Ω) is the spherical harmonics

Y ml (Ω) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) exp(imφ), Ω = (sin θ cosφ, sin θ sinφ, cos θ)T , (2.12)

with Pml (x) an associated Legendre polynomial. Multiplying (2.1a) on both sides by Y ml (Ω) and inte-
grating over Ω, we can derive the detailed form of the PN equations for (2.1a)

ε2

c

∂Iml
∂t

+
ε

2

∂

∂x

(
−Cm−1

l−1 Im−1
l−1 +Dm−1

l+1 Im−1
l+1 + Em+1

l−1 Im+1
l−1 − F

m+1
l+1 Im+1

l+1

)
+

iε

2

∂

∂y

(
Cm−1
l−1 Im−1

l−1 −D
m−1
l+1 Im−1

l+1 + Em+1
l−1 Im+1

l−1 − F
m+1
l+1 Im+1

l+1

)
+ ε

∂

∂z

(
Aml−1I

m
l−1 +Bml+1I

m
l+1

)
= −σIml + σacT 4δl0δm0, l ∈ N, m ∈ Z, |m| 6 l.

(2.13)

Here, we only consider the problem which is symmetric with the x− z plane, and then (2.13) is reduced
into the 2D equation [34]

ε2

c

∂Iml
∂t

+
ε

2

∂

∂x

(
−Cm−1

l−1 Im−1
l−1 +Dm−1

l+1 Im−1
l+1 + Em+1

l−1 Im+1
l−1 − F

m+1
l+1 Im+1

l+1

)
+ ε

∂

∂z

(
Aml−1I

m
l−1 +Bml+1I

m
l+1

)
= −σIml + σacT 4δl0δm0, l ∈ N, m ∈ Z, |m| 6 l,

(2.14)

where δij is the Kronecker-delta function, and the coefficients are

Aml =

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
, Bml =

√
(l −m)(l +m)

(2l + 1)(2l − 1)
,

Cml =

√
(l +m+ 1)(l +m+ 2)

(2l + 3)(2l + 1)
, Dm

l =

√
(l −m)(l −m− 1)

(2l + 1)(2l − 1)
,

Eml =

√
(l −m+ 1)(l −m+ 2)

(2l + 3)(2l + 1)
, Fml =

√
(l +m)(l +m− 1)

(2l + 1)(2l − 1)
.

(2.15)

The derivation of the moment system (2.14) is discussed in the literature, and we refer to [41, 34] for
more details. Especially, the governing equation for the zeroth moment I0

0 is

ε2

c

∂I0
0

∂t
+
ε

2

∂

∂x

(
D−1

1 I−1
1 − F 1

1 I
1
1

)
+ ε

∂

∂z
B0

1I
0
1 = −σI0

0 + σacT 4, (2.16)

and the energy density is

E =
1

c

∫
S2
I(t,x,Ω) dΩ =

I0
0

c
. (2.17)

In the framework of PN method, the governing equation of the total energy (2.4) is

Cv
∂T

∂t
+

1

c

∂I0
0

∂t
+

1

ε

(
1

2

∂

∂x

(
D−1

1 I−1
1 − F 1

1 I
1
1

)
+

∂

∂z
B0

1I
0
1

)
= 0. (2.18)

Moreover, a finite system is needed for the numerical simulation, and the specific intensity I(t,x,Ω) is
approximated as

I(t,x,Ω) ≈
∑
l6M

∑
|m|6l

Iml
2
√
π
Y ml (Ω), (2.19)
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where M is the truncation order. Then, we can derive the final PN system for (2.1) as

ε2

c

∂I0
0

∂t
+
ε

2

∂

∂x

(
D−1

1 I−1
1 − F 1

1 I
1
1

)
+ ε

∂

∂z
B0

1I
0
1 = −σI0

0 + σacT 4,

ε2

c

∂Iml
∂t

+
ε

2

∂

∂x

(
−Cm−1

l−1 Im−1
l−1 +Dm−1

l+1 Im−1
l+1 + Em+1

l−1 Im+1
l−1 − F

m+1
l+1 Im+1

l+1

)
+ ε

∂

∂z

(
Aml−1I

m
l−1 +Bml+1I

m
l+1

)
= −σIml , l 6M, m ∈ Z, |m| 6 l.

(2.20)

Here ImM+1 is simply set as zero to get the closed system as in [41, 34], and the resulting PN system is
globally hyperbolic.

Gathering (2.20) and (2.18), we obtain the governing equations for the PN system, which will reduce
the computational complexity when simulating (2.1). It is widely used to solve RTE, such as in [31,
35, 41]. However, the time step limitation and the multi-scale problem brought by the small mean free
path still exist for PN system. In the next sections, we will propose an AP scheme for the PN system to
release the restriction on the time step length.

3 Asymptotic-preserving IMEX method

In this section, we will introduce an asymptotic-preserving IMEX numerical scheme to solve (2.20) and
(2.18). We will begin from the order analysis of the expansion coefficients with respect to the parameter
ε, based on which we will propose the new numerical scheme.

3.1 Formal order analysis

In this section, we will analyze the order of the expansion coefficients Iml based on ε. One possible way
to describe the accuracy of the moment models in the near-continuum region is through the Chapman-
Enskog method. When in such a regime, the parameter ε is regarded as a small number. Thus the
Chapman-Enskog expansion could be applied, and the specific intensity I is expanded in power series of
ε,

I = I(0) + εI(1) + ε2I(2) + · · · . (3.1)

Define

I
m,(k)
l = 2

√
π

∫
S2
Y
m

l (Ω)I(k)(t,x,Ω) dΩ. (3.2)

We claim that for fixed k,

I
m,(k)
l = 0, for l > k. (3.3)

This could be proved by mathematical induction through the following steps:

1. If k equals zero, matching the order of O(1) in (2.1a) shows

I(0) =
1

4π
acT 4. (3.4)

Then, by the orthogonality of the spherical harmonic functions, it holds that

I
m,(0)
l =

∫
S2
Y
m

l I
(0) dΩ = 0, ∀ l > 1. (3.5)

Therefore, this claim holds for k = 0.

2. Assuming this claim holds for k 6 n as

I
m,(k)
l = 0, ∀ k 6 n, if l > k, (3.6)

then, it holds that

I
m,(n−1)
l = 0, I

m,(n)
l = 0, if l > n, (3.7)

and we consider the case k = n+ 1.
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3. If k equals n+ 1, rewrite the governing equation (2.14) into

ε2

c

∂Iml
∂t

+ ε∇xF (Iml−1) + ε∇xG(Iml+1) = −σIml , l > 0, m ∈ Z, |m| 6 l, (3.8)

where

∇xF (Iml−1) =
∂

2∂x

(
− Cm−1

l−1 Im−1
l−1 + Em+1

l−1 Im+1
l−1

)
+

∂

∂z
Aml−1I

m
l−1,

∇xG(Iml+1) =
∂

2∂x

(
Dm−1
l+1 Im−1

l+1 − F
m+1
l+1 Im+1

l+1

)
+

∂

∂z
Bml+1I

m
l+1.

(3.9)

Matching the terms at order εn+1 yields

1

c

∂I
m,(n−1)
l

∂t
+∇xF (I

m,(n)
l−1 ) +∇xG(I

m,(n)
l+1 ) = −σIm,(n+1)

l , l > 0, m ∈ Z, |m| 6 l. (3.10)

Therefore, we can derive that

I
m,(n+1)
l = − 1

σ

(
1

c

∂I
m,(n−1)
l

∂t
+∇xF (I

m,(n)
l−1 ) +∇xG(I

m,(n)
l+1 )

)
, l > 0, m ∈ Z, |m| 6 l.

(3.11)

Due to the assumption (3.7), it holds that I
m,(n−1)
l , I

m,(n)
l−1 and I

m,(n)
l+1 are all zero if l > n + 1.

Therefore, I
m,(n+1)
l = 0 for l > n+ 1.

4. By induction, I
m,(k)
l = 0 for all k when l > k, and we have proved the claim (3.3).

Then, based on (3.3), we could derive the order of Iml . Precisely, from (2.16), matching the order of
O(1) shows

I
0,(0)
0 = acT 4. (3.12)

Thus, the leading order term of I0
0 isO(1). Plugging (3.1) into (2.11), we can obtain the Chapman-Enskog

expansion of Iml as

Iml = I
m,(0)
l + εI

m,(1)
l + · · ·+ εlI

m,(l)
l + · · · . (3.13)

Based on (3.3), we can conclude that the leading order of Iml is εlI
m,(l)
l . Then, let n equal l−1 in (3.11),

it holds that

I
m,(l)
l = − 1

σ
∇xF (I

m,(l−1)
l−1 ) = O(1), l > 0, m ∈ Z, |m| 6 l, (3.14)

with the other two terms equaling zero. Thus, the final expression of Iml holds that

Iml = −εl 1

σ
∇xF (I

m,(l−1)
l−1 ) +O(εl+1), (3.15)

which indicates the order of Iml is O(εl) as

Iml = O(εl). (3.16)

Remark 1. Substituting (3.12) and (3.14) for l = 1 into the equation of total energy (2.18), we can obtain
the same diffusion equation of T as (2.7) in the framework of PN method with ε going to zero.

3.2 Semi-discrete IMEX methods

For now, we have obtained the order of Iml with respect to ε, based on which, we will introduce the
semi-discrete scheme in time with globally stiffly accurate IMEX RK scheme. From the formal order
analysis, it holds in (3.8) that

ε∇xG(Iml+1) = O(εl+2), ε∇xF (Iml−1) = O(εl), −σIml + σacT 4δl0δm0 = O(εl). (3.17)

The implicit-explicit strategy adopted here is to treat all the terms with higher-order of ε explicitly while
others implicitly. Thus, in the numerical scheme, ∇xG(Iml+1) = O(εl+2), which is at the higher-order of
ε, is set as the explicit term while ∇xF (Iml−1) and the energy exchange terms on the right side, which are
at the lower-order of ε, are set as the implicit terms. Based on this, the first-order semi-discrete scheme
is proposed as below.
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First-order scheme Given (Iml )n and Tn to approximate the solution Iml and T at time tn, the
first-order semi-discrete scheme to update the specific intensity is

ε2

c

(I0
0 )n+1 − (I0

0 )n

∆t
+ ε
(
∇xG(I0

1 )
)n

= σn
(
ac(Tn+1)4 − (I0

0 )n+1
)
, (3.18a)

Cv
Tn+1 − Tn

∆t
+

1

c

(I0
0 )n+1 − (I0

0 )n

∆t
+

1

ε

(
∇xG(I0

1 )
)n

= 0, (3.18b)

ε2

c

(Iml )n+1 − (Iml )n

∆t
+ ε
(
∇xF (Iml−1)

)n+1

+ ε
(
∇xG(Iml+1)

)n
= −σn+1(Iml )n+1. (3.18c)

Though the dominating terms in (3.18c) are treated implicitly, this first-order numerical system (3.18)
can be actually solved at the same computation cost as an explicit scheme. This is for the reason that
when solving (3.18c), the terms with implicit scheme are already known. In the implementation, the
coupled system (3.18a) and (3.18b) will be solved firstly to update (I0

0 )n+1 and Tn+1. Substituting
(3.18a) into (3.18b) yields a fourth-order polynomial equation of Tn+1 as

CvT
n+1 +

∆tac

ε2 + σn∆tc
(Tn+1)4−

(
CvT

n +
σn∆t

ε2 + σ∆tc
(I0

0 )n− ∆t2cσn

ε(ε2 + σn∆tc)

(
∇xG(Im1 )

)n)
= 0, (3.19)

the solution of which will be guaranteed by the proposition below.

Proposition 1. The equation (3.19) has only one positive solution if positive solutions for I0
0 and T

exist.

Proof. Let

f(T ) = CvT +
∆tac

ε2 + σn∆tc
T 4 −

(
CvT

n +
σn∆t

ε2 + σ∆tc
(I0

0 )n − ∆t2cσn

ε(ε2 + σn∆tc)

(
∇xG(Im1 )

)n)
. (3.20)

From (3.20), it is easy to verify that

f(0) < 0, f ′(T ) > 0. (3.21)

Then, this proposition holds.

Remark 2. Though PN is not a positive preserving method, for most of the problems we tested, I0
0 and

T are kept positive in the computation. Positivity-preserving schemes for I0
0 and T will be the subject

of future investigation.

Remark 3. To get Tn+1 efficiently, the GNC Scientific Library is utilized here to solve the fourth-order
polynomial equation (3.19), which will make the computational time of the non-linear iteration to get
Tn+1 negligible.

This first-order semi-discrete numerical scheme can be extended to the higher-order IMEX RK scheme
naturally, which is listed below.

Higher-order IMEX RK scheme To achieve higher-order accuracy in time, the globally stiffly
accurate IMEX RK scheme is adopted here. The IMEX RK scheme is widely discussed [12, 47, 39].
Thus, we only list the scheme here. The higher-order scheme is combined with the same implicit-explicit
strategy as in the first-order case. Precisely, the exact form is

ε2

c
(I0

0 )n+1 =
ε2

c
(I0

0 )n −∆t

s∑
k=1

b̃kε
(
∇xG(I0

1 )
)n+1,k

+ ∆t

s∑
k=1

bkσ
n+1,k−1

(
ac(Tn+1,k)4 − (I0

0 )n+1,k
)
,

(3.22a)

Cv
Tn+1 − Tn

∆t
+

1

c

(I0
0 )n+1 − (I0

0 )n

∆t
+

∆t

ε

s∑
k=1

b̃k
(
∇xG(I0

1 )
)n+1,k

= 0, (3.22b)

ε2

c
(Iml )n+1 =

ε2

c
(Iml )n −∆t

s∑
k=1

b̃kε
(
∇xG(Iml+1)

)n+1,k

(3.22c)

−∆t

s∑
k=1

bk

((
ε∇xF (Iml−1)

)n+1,k

− σn+1,k(Iml )n+1,k
)

= 0,

7



where the approximations at the internal stages of an RK step satisfy

ε2

c
(I0

0 )n+1,k =
ε2

c
(I0

0 )n −∆t

k−1∑
j=1

ãkjε
(
∇xG(I0

1 )
)n+1,j

+ ∆t

k∑
j=1

akjσ
n+1,j−1

(
ac(Tn+1,j)4 − (I0

0 )n+1,j
)
,

(3.23a)

Cv
Tn+1,k − Tn

∆t
+

1

c

(I0
0 )n+1,k − (I0

0 )n

∆t
+

∆t

ε

k−1∑
j=1

ãkj
(
∇xG(I0

1 )
)n+1,j

= 0, (3.23b)

ε2

c
(Iml )n+1,k =

ε2

c
(Iml )n −∆t

k−1∑
j=1

ãkjε
(
∇xG(Iml+1)

)n+1,j

(3.23c)

−∆t

k∑
j=1

akj

((
ε∇xF (Iml−1)

)n+1,j

− σn+1,j(Iml )n+1,j
)

= 0.

Remark 4. The coefficients Iml are also numerically solved successively as in (3.22). Since the lower-order
terms in (3.22c) are already known, the convection terms can be derived explicitly. Moreover, the opacity
σn+1,l in (3.22c) and (3.23c) can be computed explicitly as (I0

0 )n+1,l and Tn+1,l are already known with
σn+1,0 chosen as σn (which is a function of Tn).

The coefficients b̃ = (b̃l), b = (bl),A = (alj) and Ã = (ãlj) can be presented with a double Butcher
tableau as

c̃ Ã
b̃
T ,

c A
bT

. (3.24)

The second-order and third-order globally stiffly accurate IMEX schemes used here are the ARS(2, 2, 2)
and ARS(4, 4, 3) scheme, where the exact Butcher tableaus are as below

0 0 0 0
γ γ 0 0
1 δ 1− δ 0

δ 1− δ 0

,

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

, γ = 1− 1√
2
, δ = 1− 1

2γ
, (3.25)

and
0 0 0 0 0 0

1/2 1/2 0 0 0 0
2/3 11/18 1/18 0 0 0
1/2 5/6 −5/6 1/2 0 0
1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

,

0 0 0 0 0 0
1/2 0 1/2 0 0 0
2/3 0 1/6 1/2 0 0
1/2 0 −1/2 1/2 1/2 0
1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

. (3.26)

The IMEX RK methods are fully discussed in the literature, and we refer to [47, 12, 39] and the
references therein for more details.

3.3 Fully discrete numerical scheme

We have introduced the time-discretization in the last subsection. In this subsection, the discretization in
the spatial space will be discussed. The finite volume method to discretize the spatial space is presented
here.

3.3.1 Spatial Discretization

The PN equations (2.14) and (2.18) are discretized by the finite volume method with linear or third-order
WENO reconstruction in space. Let xi = i∆x, zj = j∆z and tn = n∆t be the uniform mesh in Cartesian
coordinates. Let (i, j) denote the cell {(x, z) : xi−1/2 < x < xi+1/2, zj−1/2 < z < zj+1/2}. (Imi,j,l)

n and
Tni,j are the averaged expansion coefficients of the specific intensity and the temperature, respectively.
To get the numerical flux for PN system, we rewrite the convection part of (3.18a) and (3.18c) together
as

C = ε

(
Ālow
x

∂Ī

∂x
+ Ālow

z

∂Ī

∂z

)n+1

+ ε

(
Āup
x

∂Ī

∂x
+ Āup

z

∂Ī

∂z

)n
, (3.27)
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where Ālow
x , Ālow

z , Āup
x , Āup

z are made up by F (Iml−1) and G(Iml+1), respectively with Ī = (I0
0 , I
−1
1 , I0

1 , · · · ).
The Lax-Friedrichs scheme is utilized here to obtain the numerical flux as(

εĀs
x

∂Ī

∂x

)l
i,j

≈ 1

∆x

(
Fs,li,j

(
Īli,j , Ī

l
i+1,j

)
−Fs,li,j

(
Īli−1,j , Ī

l
i,j

) )
, l = n, n+ 1, s = low,up,(

εĀs
z

∂Ī

∂z

)l
i,j

≈ 1

∆z

(
Gs,li,j

(
Īli,j , Ī

l
i,j+1

)
− Gs,li,j

(
Īli,j−1, Ī

l
i,j

) )
, l = n, n+ 1, s = low,up,

(3.28)

where the exact form of Fs,li,j (U1, U2) and Gs,li,j (U1, U2) are

Ss,li,j (U1, U2) =
ε

2
Ās
w(U1 + U2)− coe(s, l)

αi,jε

2
(U2 − U1), w = x, z, S = F ,G, (3.29)

with
αi,j = α(σi,j , ε) = exp(−σi,j/ε2), (3.30)

and

coe(s, l) =

{
1, s = up or (l = M and s = low),
0, otherwise.

(3.31)

The parameter coe(s, l) is utilized here to make sure that the diffusion term will only appear once in the
numerical flux.

Remark 5. The coefficient α(σ, ε) is an artificial parameter inspired by [6], and is chosen to ensure the
stability of the numerical scheme when ε is small. The numerical scheme will reduce to the central
difference scheme with ε going to zero, and remains to be the Lax-Friedrichs numerical scheme when ε
is large. We have proved the stability of the first-order numerical scheme with this α in the following
sections by Fourier analysis and energy stability analysis. More discussions and analyses about α will
be also done in future work.

3.3.2 Time step length

As will be proved in Section 4.1, when ε goes to zero, the numerical scheme (3.18) with (3.28) will
converge to an explicit scheme of the nonlinear diffusion equation (2.7). Therefore, the time step length
is set as

∆t = max{Cε∆x/c, Cσmin∆x2/c}, (3.32)

where σmin is the minimum value of σ(x) all over the computation domain, and C is the CFL number.
Here, it always requires that C < 1.

Following the method in [39], we will discuss the stability of the numerical scheme (3.18) and (3.28)
with the time step length (3.32) for the linear system (2.10). Numerical experiments indicate that this
choice may also work when the method is applied to more general models, such as the gray approximation
to the radiative transfer equations (2.1). Let P1 system as an example. The first-order system for the
P1 system is reduced into

ε2
In+1
0,j − In0,j

∆t
+ ε

In1,j+1 − In1,j−1

2∆x
− αε

2

In0,j+1 − 2In0,j + In0,j−1

∆x
= 0,

ε2
In+1
1,j − In1,j

∆t
+
ε

3

In+1
0,j+1 − I

n+1
0,j−1

2∆x
− αε

2

In1,j+1 − 2In1,j + In1,j−1

∆x
= −In+1

1,j .

(3.33)

We follow the definition of stability as in [39] here. To carry out the Fourier analysis, assuming the mesh
is uniform and the periodic boundary condition is imposed, let the numerical solutions be

(I0)nj = În0 exp(ikjh), (I1)nj = În1 exp(ikjh), j = 0, · · · , N − 1, k ∈ Z, (3.34)

where j is the index in the x−axis and k is the index for the Fourier mode. Then, (3.33) will be reduced
to (

În+1
0

În+1
1

)
= C(ε, α,∆t,∆x, ξ)

(
În0
În1

)
(3.35)

with

C(ε, α,∆t,∆x, ξ) =

(
ε2

∆t 0
iε sin(ξ)

3∆x
ε2

∆t + 1

)−1(
ε2

∆t + αε(cos(ξ)−1)
∆x − iε sin(ξ)

∆x

0 ε2

∆t + αε(cos(ξ)−1)
∆x

)
, ξ = k∆h ∈ [0, 2π].

(3.36)
As is stated in [39], the numerical scheme (3.33) is stable, if it satisfies ∀ξ ∈ [0, 2π],
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1. max{|λ1(ξ)|, |λ2(ξ)|} < 1,

2. max{|λ1(ξ)|, |λ2(ξ)|} = 1 and C is real diagonalizable,

where λi, i = 1, 2 are the eigenvalues of C. As is stated in [39], the stability is a necessary condition for
the standard L2 energy to be non-increasing.

Proposition 2. The numerical scheme (3.33) for the linear system (2.10) satisfies the conditions (3.3.2),
and is then stable.

This proposition is proved in Appendix A.3, and can be extended to the general PN system.

3.3.3 Algorithm

Based on all the discussions above, the algorithm will be summarized as below.

1. Given Īni,j and Tni,j at time step n;

2. Update the specific intensity and temperature according to the IMEX scheme (3.22), (3.23) and
(3.28), which includes the two steps below at the internal stage k of a RK step

(a) Obtain T ki,j and (I0
0 )ki,j by solving the equations (3.23a) and (3.23b);

(b) Calculate (Iml )ki,j by (3.23c);

3. Go to 1 for the next step.

4 Formal asymptotic property and stability analysis

In this section, we will study the asymptotic property and the stability for the proposed AP IMEX
scheme.

4.1 Formal asymptotic analysis

The asymptotic preserving property is quite important for multi-scale problems. In the realistic thermal
radiative transfer problems, it is not practical to resolve the mean-free path, which requires prohibitively
small grid cells. Therefore, the AP property is required. It is expected that when holding the mesh size
and time step fixed, the AP scheme should automatically recover the discrete diffusion solution when
the mean free path goes to zero [43, 17, 22, 23, 35]. For the radiative transfer problem (2.1), this is to
say that the numerical method could give a valid discretization of the nonlinear diffusion equation (2.7)
[31].

We will examine the AP property of this numerical method in the asymptotic limit away from
boundary and initial layers, and the first-order numerical scheme is studied here. The theorem below
shows the AP property of this method.

Theorem 1. As the parameter ε goes to zero, the numerical scheme proposed in 3.3.3 approaches an
explicit five-point scheme for the nonlinear diffusion equation (2.7).

Proof. From (3.15) and (3.18c), it holds that

−σn+1(Im1 )n+1 ≈ ε

(
∇xF (Im0 )

)n+1

= ε

(
∂

2∂x

(
− Cm−1

0 Im−1
0 + Em+1

0 Im+1
0

)
+

∂

∂z
Am0 I

m
0

)n+1

, |m| 6 1.

(4.1)
With the numerical flux (3.28), we can derive the final approximation to (Im1 )n+1

i,j at grid (i, j). Precisely,
the exact expression for (Im1 )ni,j ,m = −1, 0, 1 is

(I0
1 )ni,j =

−ε
σni,j

(√
1

3

(I0
0 )ni,j+1 − (I0

0 )ni,j−1

∆z
+
αni,j
2c

(
(I0

1 )ni,j+1 − 2(I0
1 )ni,j + (I0

1 )ni,j−1)

∆z

)
,

(I−1
1 )ni,j =

−ε
σni,j

(√
2

3

(I0
0 )ni+1,j − (I0

0 )ni−1,j

2∆x
+
αni,j
2c

(I−1
1 )ni+1,j − 2(I−1

1 )ni,j + (I−1
1 )ni−1,j

∆x

)
,

(I1
1 )ni,j =

ε

σni,j

(√
2

3

(I0
0 )ni+1,j − (I0

0 )ni−1,j

2∆x
+
αni,j
2c

(I1
1 )ni,j − 2(I1

1 )ni,j + (I1
1 )ni−1,j

∆x

)
.

(4.2)
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With the numerical flux (3.28), the fully discrete form of (3.18b) is reduced into

Cv
Tn+1
i,j − Tni,j

∆t
+

1

c

(I0
0 )n+1
i,j − (I0

0 )ni,j
∆t

+
1

ε

(Fni+1/2,j −F
n
i−1/2,j

∆x
+
Gni,j+1/2 − G

n
i,j−1/2

∆z

)
= 0, (4.3)

where

Fni+1/2,j,g =
1

4

√
2

3

( (
(I−1

1 )ni,j − (I1
1 )ni,j

)
+
(
(I−1

1 )ni+1,j − (I1
1 )ni+1,j

) )
+
αni,j
4c

(
(I0

0 )ni+1,j − (I0
0 )ni,j

)
,

Gni,j+1/2,g =
1

2
√

3

(
(I0

1 )ni,j + (I0
1 )ni,j+1

)
+
αni,j
4c

(
(I0

0 )ni,j+1 − (I0
0 )ni,j

)
.

(4.4)

From (3.30), we can obtain that

lim
ε→0

αni,j = lim
ε→0

exp(−σni,j/ε2) = 0. (4.5)

Substituting (4.2) into (4.4) and omitting the higher-order term of ε, it holds that

1

ε

(Fni+1/2,j,g −F
n
i−1/2,j,g

∆x
+
Gni,j+1/2,g − G

n
i,j−1/2,g

∆z

)

= −1

3

 (I00 )ni+2,j−(I00 )ni,j
2∆xσn

i+1,j
− (I00 )ni,j−(I00 )ni−2,j

2∆xσn
i−1,j

2∆x
+

(I00 )ni,j+2−(I00 )ni,j
2∆zσn

i,j+1
− (I00 )ni,j−(I00 )ni,j−2

2∆zσn
i,j−1

2∆z

 .

(4.6)

Together with (4.4), and (4.6), we can find that (4.3) becomes a five-point scheme for the nonlinear
diffusion equation (2.7), and this shows that the current scheme for RTE (2.1) is an AP scheme.

For the 1D spatial problem, when ε goes to zero, (4.3) is reduced into

Cv
Tn+1
i − Tni

∆t
+ a

(T 4
i )n+1 − (T 4

i )n

∆t
=
ac

3σ

(T 4
i+2)n − 2(T 4

i )n + (T 4
i−2)n

4∆x2
. (4.7)

The linear version of (4.7) is

φn+1
i − φni

∆t
=

c

3σ

φni+2 − 2φni + φni−2

4∆x2
, φi = T 4

i . (4.8)

Fourier analysis shows the stability condition for (4.8) is

c∆t

3σ∆x2
6

1

max | cos(2∆x)− 1|
= 1. (4.9)

4.2 Energy stability

Energy stability is another important property for a new numerical scheme. In this section, the general
nonlinear stability of the numerical scheme for the complete system will be discussed.

4.2.1 Gray approximation of the radiative transfer equations

Just to show the property of the numerical scheme, PN equations for the gray approximation of the
radiative transfer equations in a one-dimensional planar geometry medium are studied. The exact form
of the gray approximation of the radiative transfer equations and the corresponding PN equations are
presented in Appendix A.1. Without loss of generality, the opacity σ(x, T ) and heat capacity Cv are
all set as constant. The periodic boundary condition is adopted in the spatial space. In this case, the
first-order scheme (3.18) is reduced into

ε2

c

Īn+1
i − Īni

∆t
+ Γlow(Īn+1

i ) + Γup(Īni ) = −σĪn+1
i + acσ

(
T 4
)n+1

i
e1, (4.10a)

ε2Cv
Tn+1
i − Tni

∆t
+
ε2

c

In+1
0,i − In0,i

∆t
+ Γup(Īni )e1 = 0. (4.10b)
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where the numerical flux is defined as

Γs(Ui) =
Fs(Ui+1, Ui)−Fs(Ui, Ui−1)

∆x
, s = up, low, (4.11)

with Fs(U1, U2) defined in (3.29), e1 defined in Appendix A.1, and the matrix Ās
x changed into Bs

defined in Appendix A.1.
We will begin from the gray approximation of the radiative transfer equations to establish the nu-

merical stability analysis for (4.10). The proposition below shows the energy inequality for this system
as

Proposition 3. For the RTE (A.1) with constant opacity σ and periodic boundary in the spatial space,
the energy inequality holds

ε2

2c

∂

∂t

∫
x∈L

∫ 1

−1

I2 dµdx+
ε2Cv

5

∂

∂t

∫
x∈L

1

2
acT 5 dx 6 0. (4.12)

Proof. Multiplying (A.1a) with I and taking integration over µ and x, with the periodic boundary
condition, we can derive that

ε2

2c

∂

∂t

∫
x∈L

∫ 1

−1

I2 dµdx = σ

∫
x∈L

(
1

2
acT 4

∫ 1

−1

I dµ−
∫ 1

−1

I2 dµ

)
dx. (4.13)

Multiplying (A.1b) with ac
2 T

4 and integrating over x, it holds that

ε2Cv
5

∂

∂t

∫
x∈L

1

2
acT 5 dx = σ

∫
x∈L

(
1

2
acT 4

∫ 1

−1

I dµ− 1

2
(acT 4)2

)
dx. (4.14)

Together with (4.13) and (4.14), it holds with Cauchy-Schwarz inequality that

ε2

2c

∂

∂t

∫
x∈L

∫ 1

−1

I2 dµdx+
ε2Cv

5

∂

∂t

∫
x∈L

1

2
acT 5 dx

= σ

∫
x∈L

(
acT 4

∫ 1

−1

I dµ− 1

2
(acT 4)2 −

∫ 1

−1

I2 dµ

)
dx

6
−σ
2

∫
x∈L

(
acT 4 −

∫ 1

−1

I dµ

)2

dx 6 0.

(4.15)

Then we finish the proof of Proposition 3.

Based on the energy inequality for the continuous equations, the stability result for the first-order
scheme (4.10) is listed in the theorem below.

Theorem 2. Following [11], define the discrete energy as

E(tn+1) =
∑
i

[
ε2

2c∆t

((
In+1
0,i

)2
+

M∑
l=1

(2l + 1)
(
Inl,i
)2)

+ ε2Cv
(T 5
i )n+1

5∆t

]
. (4.16)

Then, for periodic boundary conditions, the following stability result holds for the first-order AP scheme
defined in (4.7),

E(tn+1)− E(tn) 6 0 (4.17)

with the time step length (3.32).

Due to the tedious process, the proof is put in Appendix A.4.

5 Numerical results

In this section, several numerical simulations for the radiative transfer equations in spatially 1D and 2D
cases are studied to validate the efficiency of this numerical method. We have implemented the first-order
(3.18) and third-order IMEX RK scheme (3.22) to approximate RTE. In all 1D numerical tests, the CFL
number is set as C = 0.4. For 2D test cases, the CFL number is set as C = 0.1. Periodic and inflow
boundary conditions are implemented, the details of which are presented in Appendix A.2.
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5.1 The AP property

This example is designed to test the AP property and the order of accuracy of this numerical method
for the first-order scheme (3.18) and the higher-order scheme (3.22). The test starts with an equilibrium
initial data

T = (3 + sin(πx))/4, I = acT 4, x ∈ L. (5.1)

The computation region is set as L = [0, 2] with the periodic boundary condition imposed on both ends.
The parameters are set as a = c = 1.0, Cv = 0.1 and σ = 10. Similar tests can be found in the literature
for the Boltzmann equation [49].

0 50 100 150

t

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Figure 1: Time evolution of EAP with different ε. The x-axis is time t, and the y-axis is log10(EAP).

In this test, the mesh size is N = 100 and the expansion order of the PN method is M = 7. Since
we are going to test the behavior of the numerical scheme when ε goes to zero, the time step is set as
∆t = C∆x2/c. Figure 1 shows the time evolution of EAP as

EAP =

√√√√∆x

N∑
i=1

(
(I0,i − acT 4

i )2 +

M∑
j=1

I2
j,i

)
, (5.2)

for the numerical scheme (3.18) with different ε. We can see that for any ε, EAP is decreasing with time
and then reaches a final steady state. With the decreasing of ε, the final value of EAP becomes smaller,
which shows the AP property of the numerical scheme.

Next, we test the order of the numerical scheme (3.18). The initial data (5.1) with the same param-
eters are applied. We compute the solutions with grid size N = 50, 100, 200, 400 and 800, respectively
for ε = 1, 0.1 and 0.01. The final time is t = 0.5, and the numerical solution with N = 1600 is chosen
as the reference solution. The l2 error between the numerical solution and the reference solution with
different ε is calculated. Figure 2 shows the convergence order of the numerical method for different ε.
It illustrates that for different ε, the scheme is the uniformly first-order, which also validates the AP
property of the numerical scheme.

To further verify the AP property of this numerical scheme, we redo the test with higher-order
scheme. First, the linear reconstruction with IMEX3 scheme is utilized. The grid size is set as N =
100, 200, 400, 800, respectively for ε = 1, 0.1, 0.01, 10−6. The numerical solution with N = 1600 is chosen
as the reference solution. The final time is t = 0.5, and the l2 error between the numerical solution and
the reference solution with different ε is calculated. Figure 3 shows the convergence order of the numerical
method for different ε. It illustrates that for different ε, the scheme is the uniformly second-order.

With the same settings as above, we will test the convergence order of the numerical method for
different ε by IMEX3 scheme with the third-order WENO reconstruction. The numerical results are
shown in Figure 4. We could see that the convergence order of different ε is the same. However, it is
only second-order. We have studied the reason carefully, and a simple proof is proposed in Appendix
A.5.

To record the evolution of the temperature T with ε, the evolution of T for different ε is plotted in
Figure 5, where two positions x = 0.505 and 1.005 are recorded. Here, the grid size is N = 200, and
ε = 1, 0.5, 10−2, 10−6. The evolution of the temperature T of the nonlinear diffusion equation (2.7) is
also plotted. From it, we can see that the temperature T is converging to the solution of the nonlinear
diffusion equation as ε approaches zero. The behavior of T also validates the stability of the numerical
scheme when ε goes to zero.
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Figure 2: l2 error between the numerical solution with grid size N = 50, 100, 200, 400 and 800 and the
reference solution N = 1600. (a) The l2 error of the specific intensity I. (b) The l2 error of the material
temperature T .
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Figure 3: l2 error with linear reconstruction between the numerical solution with grid size N =
100, 200, 400 and 800 and the reference solution is N = 1600. (a) The l2 error of the specific inten-
sity I. (b) The l2 error of the material temperature T .
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Figure 4: l2 error with third-order WENO reconstruction between the numerical solution with grid size
N = 100, 200, 400 and 800 and the reference solution N = 1600. (a) The l2 error of the specific intensity
I. (b) The l2 error of the material temperature T .
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Figure 5: The evolution of temperature T with time increasing for different ε. (a) The value of T at
x = 0.505. (b) The value of T at x = 1.005.

5.2 Marshak wave problems

In the following examples, the classical Marshak wave problems are tested. The Marshak problem
is one of the benchmark problems and is also studied in the literature such as [43, 24, 31]. In the
computations, the parameters are chosen the same as that in [43] with a = 0.01372GJ/cm3 − keV4 and
c = 29.98cm/ns. In this section, two absorption/emission coefficients are tested. For both cases, the
inflow boundary condition is imposed on both the left and right sides, where the Marshak type boundary
condition [31] is utilized. The details of the Marshak type boundary are proposed in Appendix A.2.
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Figure 6: The material temperature T of Marshak Wave-2B problem at time t = 10, 50 and 100. The
left picture is the PN solution and the reference solution get by SN method. The right picture is the PN
solution and the reference solution in [31] and the black line is that to the diffusion limit.

Marshak Wave-2B In this example, we take the absorption/emission coefficient to be σ = 100/T3cm2/g,
the density to be 3.0g/cm3 and the specific heat to be 0.1GJ/g/keV. The initial material temperature
T is set to be 10−6keV. A constant isotropic incident specific intensity with a Planckian distribution at
1 keV is kept on the left boundary. The computation domian is [0,∞) but taken to be L = [0, 0.2] in
the simulations. In this case, σ is large enough that the solution to RTE is almost the same as that of
the diffusion limit (2.7).

In the test, the expansion order of PN is set as M = 11 with the grid size N = 400. The third-order
IMEX RK scheme (3.22) is applied here, where the time step is set as

∆t = C∆x/c. (5.3)

In Figure 6, the numerical results of the radiation wave front at time t = 10, 50 and 100 are plotted. In
Figure 6a, the reference is obtained by the SN method, and in Figure 6b, the reference solution is from
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[31] and the diffusion limit result is produced by the finite difference method. From Figure 6, we can find
that the numerical solution to RTE is on top of each other with that of the reference solution and the
diffusion limit results, which is also consistent with the expectation that the solution to RTE is almost
the same as the diffusion limit.

Marshak Wave-2A Marshak Wave-2A problem is quite similar to Marshak Wave-2B problem, except
that its absorption/emission coefficient is σ = 10/T3cm2/g. In this case, since σ is not large enough, the
solution to RTE is different from that of the diffusion limit.

In this test, the same numerical setting as Marshak wave-2B problem is chosen. In Figure 7a,
the computed radiation wave front at time t = 0.2, 0.4, 0.6, 0.8 and 1.0 are given and the reference is
obtained from the SN method. Figure 7b presents the computed material temperature for both the gray
approximation to the radiation transfer equations and the nonlinear diffusion equation at time t = 1,
where the reference solution is from [19]. From it, we can see that the numerical solution matches the
reference solution well, but is quite different from the diffusion limit.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) material temperature

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) material temperature

Figure 7: The material temperature T of Marshak Wave-2A problem at different time. (a) The material
temperature T of Marshak Wave-2A problem at t = 0.2, 0.4, 0.6, 0.8 and 1. The black line is the reference
solution obtained by SN method. (b) The material temperature T of Marshak Wave-2A problem at t = 1,
where the red line is the numerical solution to RTE, the black line is the reference solution and the blue
line is that to diffusion limit.

From the numerical results of Marshak wave problems, we can find that the new numerical scheme
works well both for the optically thick and thin problems. The time step length is independent of the
absorption coefficients σ, which shows the high efficiency of this AP numerical scheme.

5.3 A lattice problem
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Figure 8: Layout of the lattice problem.

In this section, we study a two-dimensional problem with the added complication of multiple materials
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but without radiation-material coupling. We consider the transfer equation

ε2

c

∂I

∂t
+ εΩ · ∇I = −σaI + σs

(
1

4π

∫
S2
I dΩ− I

)
+ ε2G. (5.4)

Photons are absorbed with a power density of
cσa
ε2
I. As there is no radiation-material coupling, the

photons are simply removed from the system when the absorption occurs. The isotropic scattering term
does not change the radiation temperature but causes the specific intensity I to become more evenly
distributed in microscopic velocity. The computation domain is [0, 7] × [0, 7]. It consists of a set of
squares belonging to a strongly absorbing medium in a background of weakly scattering medium. The
specific layout of the problem is given in Figure 8, where the blue regions and the dark red region are
purely scattering medium with σs = 1 and σa = 0; the light green regions contain purely absorbing

material with σs = 0 and σa = 10. In the dark red region, there is an isotropic source G =
1

4π
, and

G is zero elsewhere. Initially the specific intensity is at equilibrium and the radiation temperature is
10−6. Vacuum boundary conditions are imposed on all four sides of the computation domain, which
means there is an outflow of radiation but no inflow. The detailed application of the inflow boundary
is proposed in Appendix A.2, and we also refer to [31] for more details. Other parameters are set as
c = a = ε = 1.

We use a mesh of 280 × 280 in the spatial space and P5 is adopted here. Moreover, the filtering
technique is applied in the microscopic velocity space to avoid negative energy density solution. Filtering
techniques as proposed in [32] are employed in 2D simulations to suppress spurious oscillations in PN
solutions. The filtering applied here is only applied to l > 2M/3, where M is the highest order of
spherical harmonic expansion [10, 5]. For these l, before updating each time step, we substitute Iml with

Îml . Precisely

Îml =
Iml

1 + αl2(l + 1)2
, (5.5)

where

α =
ω

M2

1

[(σa + σs)L+M ]2
, ω =

2c∆t

∆x
, (5.6)

with L the characteristic length of the problem, which is taken to be L = 1 for all the simulations. σa
and σs are the absorption and scattering coefficients, respectively.
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Figure 9: The contour and slice plot of log10 I
0
0 for the lattice problem at t = 3.2. (a) Contour plot of

the AP numerical scheme. (b) The contour plot of the reference solution reproduced using StaRMAP.
(c) Comparison between the numerical solution and the reference solution reproduced by StaRMAP at
x = 3.5.

In the test, the first-order scheme (3.18) is utilized for temporal discretization and a third-order
WENO reconstruction is adopted in spatial discretization. The results at time t = 3.2 are shown in
Figure 9 with the logarithm of I0

0 to the base 10 shown in contour and slice. The reference solution is
obtained using StarRMAP [40, 41]. Figure 9 show that both solutions agree with each other quite well,
and the beams of the particles leaking between the corners of the absorbing regions are all well produced.
This phenomenon is also studied in [1, 41], and the behavior of the numerical results are almost the same.
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Figure 10: Layout of the hohlraum problem. The blue regions are where (x, y) ∈ [0, 0.05] × [0.25, 0.75],
and (x, y) ∈ [0.25, 0.75] × [0.25, 0.75], (x, y) ∈ [0, 1] × [0, 0.05], (x, y) ∈ [0, 1] × [0.95, 1] and (x, y) ∈
[0.95, 1]× [0, 1].

5.4 A hohlraum problem

This section studies the hohlraum problem, which is similar to that in [32]. For this problem, the
radiation field is coupled with the material energy. It is well known that the diffusion approximation
fails to capture the correct physics of this problem [1, 32], making it necessary to simulate the original
RTE (2.1). Moreover, in this problem, the material is initially cold and optically thick, and then becomes
optically thinner as radiation heats it up. The wide range in optical depth presents a challenge to the
numerical schemes. The layout of the problem is shown in Figure 10. The computation domain is
[0, 1] × [0, 1], where the white areas are vacuum with σa = 0. The blue regions in Figure 10 satisfy
σa = 100/T3cm2/g, while the density is 1.0g/cm3 and the heat capacity Cv is 0.3GJ/g/keV. An isotropic
inflow of 1 keV black body source is incident on the entire left boundary. For the boundary conditions,
the Marshak type inflow boundary condition is applied. For the left boundary there is an isotropic inflow,
and for other boundaries, the outside is treated as vacuum. Therefore, there is an outflow of radiation
but no inflow in other three boundaries. The details of the Marshak type inflow are also proposed in
Appendix A.2. In the simulation, the related parameters are set as ε = 1, a = 0.01372GJ/cm3 − keV4

and c = 29.98cm/ns. The mesh size is 100× 100 in the spatial space and the PN method with M = 7 is
utilized. The first-order scheme for the time discretization and third-order WENO reconstruction in the
spatial discretization is utilized here with the same filtering techniques in the last section.
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Figure 11: The contour plots of radiation and material temperature of the hohlraum problem produced
by the AP scheme at t = 1. (a) Radiation temperature. (b) Material temperature.

Figure 11 presents the contour plots of the numerical solution for the radiation temperature and the
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material temperature at t = 1, where the radiation temperature is defined as

Trad =
4

√
I0
0

ac
. (5.7)

As is stated in [32] that the solution to this problem has two properties, first of which is the non-uniform
heating of the central block, and the other is less radiation directly behind the block than those regions
within the line of source sight. The same phenomenon could also be found in the numerical results here.
Moreover, the numerical results also show that the photons could bend around the front wall and the
back wall is starting to heat up and re-emit photons. The numerical solutions along y = 0.125 and
x = 0.85 are plotted in Figure 12, where the solution obtained by IMC method [32] is also plotted. We
can find that the numerical solutions are in rough agreement with the IMC solution.
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Figure 12: The radiation temperature of the hohlraum problem at t = 1 on different slices. Here, the
blue line the numerical solution by the AP numerical method, and the red line is the reference solution
by IMC method in [32]. (a) radiation temperature Trad at y = 0.125. (b) radiation temperature Trad at
x = 0.85.

6 Conclusions

In this paper, we have developed an AP IMEX numerical scheme for the RTE system in the framework of
PN method. The Chapman-Enskog expansion is utilized to derive the order of each expansion coefficient
of the specific intensity respected to the mean free path. Thus, in each equation of the PN system,
the terms at lower-order of the mean free path are set as an implicit term with those at higher-order
set as an explicit term. Therefore, the implicit-explicit PN system can be solved at the computational
cost of a completely explicit scheme with the time step length independent of the mean free path. The
analysis of the total energy shows the energy stability with the evolution of time. Numerical examples
have exhibited the AP property and the efficiency of this new scheme. However, this method is limited
to the gray approximation of the radiative transfer equations for the moment. Research works on the
frequency-dependent problem are ongoing.
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A Appendix

A.1 The gray approximation of the radiative transfer equations for 1D angle
problem and related PN equations

The time-dependent gray approximation of the radiative transfer equations [31] in a one-dimensional
planar geometry medium have the form as

ε2

c

∂I

∂t
+ εµ

∂I

∂x
= σ

(
1

2
acT 4 − I

)
, x ∈ [0, L], (A.1a)

ε2Cv
∂T

∂t
= σ

(∫ 1

−1

I dµ− acT 4

)
, (A.1b)

where I(t, x, µ) is the specific intensity of radiation, µ = cos θ ∈ [−1, 1] is the internal coordinate
associated with the angle θ ∈ [0, π]. T (t, x) is the material temperature, and σ is the absorption opacity.
Moreover, the one-dimensional form of (2.10) is reduced into

ε2

c

∂I

∂t
+ εµ

∂I

∂x
= σ

(
1

2

∫
I dµ− I

)
, x ∈ [0, L]. (A.2)

For (A.1), the basis function for the PN method is the Legendre polynomials. The moments are defined
as

Il =

∫ 1

−1

Pl(µ)I(t, x, µ) dµ, l = 0, · · ·M, (A.3)

where Pl is the Legendre polynomial. Then, the PN equations for (A.1) are

ε2

c

∂Ī

∂t
+ εBlow ∂Ī

∂x
+ εBup ∂Ī

∂x
= −σĪ + σacT 4e1,

ε2Cv
∂T

∂t
= σ

(
I0 − acT 4

)
,

(A.4)

where Ī = (I0, I1, · · · , IM ) and e1 = (1, 0, · · · , 0)T . Blow and Bup are triangular matrix with the non-zero
entries as

Blow(i+ 1, i) =
i

2i+ 1
, Bup(i, i+ 1) =

i

2(i− 1) + 1
, i = 1, · · ·M. (A.5)

A.2 Inflow boundary condition for PN equations

We implement the inflow boundary condition for the PN equations by specifying the values of coefficients
of the PN system in ghost cells. Choosing the left boundary as an example, the incoming specific intensity
incident on the boundary interface is

I(µ) = Ib(µ), for µ > 0. (A.6)

For the PN method, the numerical boundary can be rewritten as

Ighost(µ) =

{
Ib(µ), µ > 0,
Ii(µ), µ < 0,

(A.7)

where Ii(µ) is the specific intensity at the left boundary of the area. Then, the expansion coefficient at
the ghost cell is

Ighost
l =

∫ 1

−1

Ighost(µ)Pl(µ) dµ. (A.8)

The implementation of the inflow boundary condition in 2D is similar in spirit to that of 1D. Supposing
n is the outward normal of the boundary interface, the incident specific intensity on the boundary is

I(Ω) = Ib(Ω), for Ω · n < 0. (A.9)

For the PN method, the numerical boundary can be rewritten as

Ighost(Ω) =

{
Ib(Ω), Ω · n < 0,
Ii(Ω), Ω · n > 0,

(A.10)
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where Ii(Ω) is the specific intensity on the interior side of the boundary interface. Thus, the expansion
coefficient at the ghost cell is

Im,ghost
l =

∫
S2
Ighost(Ω)Y ml (Ω) dΩ

=

∫
Ω·n<0

Ib(Ω)Y ml (Ω) dΩ +

∫
Ω·n>0

Ii(Ω)Y ml (Ω) dΩ

=

∫
Ω·n<0

Ib(Ω)Y ml (Ω) dΩ +

M∑
j=0

j∑
k=−j

Ik,ij

∫
Ω·n>0

Y kj (Ω)Y ml (Ω) dΩ.

(A.11)

The integration
∫
Ω·n>0

Y kj (Ω)Y ml (Ω) dΩ does not depend on the specific numerical solutions, and is
pre-computed.

A.3 Proof of Proposition 2

In this section, the proof of the Proposition 2 is proposed here.

Proof of Proposition 2. Following the method in [39], we will begin the Fourier analysis of (3.18) for
the P1 system of the linear equation system (A.2). The result can be extended to the generalized PN
system naturally. We will first discuss two special cases where ξ = 0, π. Therein, C is reduced into a real
diagonal matrix with the maximum eigenvalues equaling 1. According to the principle, the numerical
scheme is stable.

Then, we study the general case by considering two scenarios according to the time step length:

1. ε < ∆x, where
∆t = C∆x2. (A.12)

Substituting the time step length (A.12) into (3.36), we can find that λi, i = 1, 2 are functions of
C, ε

∆x , α and ξ. Introducing two variables as β1 = log10(C) and β2 = log10(ε/∆x), the stability
regions are plotted in Figure 13 with fixed α. Here the discrete wave number ξ is uniformly taken
from [0, 2π] with 200 samples. In this case, due to the definition of C which is the CFL number
and ε < ∆x, the range for β1 and β2 is changed into

β1 < 0, β2 < 0. (A.13)

Moreover, it is natural to demand that ε < ∆x < 0.4. Thus, α is taken uniformly from [0, exp(−1/0.16)]
with 100 samples and six cases are shown in Figure 13 due to their similar behavior. From Figure
13, we can find that when α = 0, the numerical scheme is always stable. However, with the increase
of α, the stability region is becoming smaller, especially when the CFL number C is large and the
radio ε/∆x is small. We find that when α = exp(−1/0.16), the numerical scheme is stable when
log10(ε/∆x) > −2.5. Noting that when α = exp(−1/0.16), which means ε = 0.4, log10(ε/∆x) is
always larger than −2.5 for ∆x < 1. This indicates that in the simulation of benchmark problems,
the stability condition is always satisfied.

2. ε > ∆x, where
∆t = Cε∆x. (A.14)

Substituting the time step length (A.14) into (3.36), we can easily find that λi, i = 1, 2 are also the
function of C, ε

∆x , α and ξ. Introducing the same two variables βi, i = 1, 2, we plot the stability
regions in Figure 14 with fixed α. Here the discrete wave number ξ is uniformly taken from [0, 2π]
with 200 samples. Since

α = exp

(
− 1

ε2

)
, (A.15)

and assuming ε < 1 in the numerical test, α is taken uniformly from [0, 0.5] with 100 samples. As
their behavior is similar, the six cases α = 0, 0.05, 0.1, 0.2, 0.3 and 0.5 are plotted here to illustrate
the result. Moreover, due to the definition of C which is the CFL number, and the condition that
ε > ∆x, it holds that

β1 < 0, β2 > 0. (A.16)

From Figure 14, we can find that the numerical scheme is stable under the time step length
(A.14). In the numerical tests, the upper bound of ε is ε = 105∆x, which is large enough for the
computational parameter.
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(a) α = 0 (b) α = 0.1 exp(−1/0.16) (c) α = 0.3 exp(−1/0.16)

(d) α = 0.5 exp(−1/0.16) (e) α = 0.8 exp(−1/0.16) (f) α = exp(−1/0.16)

Figure 13: The stability region for the numerical scheme (3.18) of P1 system under the condition (A.12).
The x-axis is β2 = log10(ε/∆x), and the y-axis is the CFL number C. The blue region is the area where
the numerical scheme is stable and the yellow region is the area where the numerical scheme is unstable.

(a) α = 0 (b) α = 0.05 (c) α = 0.1

(d) α = 0.2 (e) α = 0.3 (f) α = 0.5

Figure 14: The stability region for the numerical scheme (3.18) of P1 system under the condition (A.14).
The x-axis is β2 = log10(ε/∆x), and the y-axis is the CFL number C. The blue region is the area where
the numerical scheme is stable.

A.4 Proof of Theorem 2

In this section, the proof of Theorem 2 is proposed here.

Proof of Theorem 2. We will take M = 2 as an example, and it could be extended to the general case
naturally. Moreover, without loss of generality, we set a = c = Cv = σ = 1 in the proof. When M = 2,
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(4.10) is reduced into

ε2
In+1
0,j − In0,j

∆t
+ ε

In1,j+1 − In1,j−1

2∆x
− αε

2

In0,j+1 − 2In0,j + In0,j−1

∆x
=
(
(T 4
j )n+1 − In+1

0,j

)
, (A.17a)

ε2
In+1
1,j − In1,j

∆t
+
ε

3

In+1
0,j+1 − I

n+1
0,j−1

2∆x
+

2ε

3

In2,j+1 − In2,j−1

2∆x
− αε

2

In1,j+1 − 2In1,j + In1,j−1

∆x
= −In+1

1,j , (A.17b)

ε2
In+1
2,j − In2,j

∆t
+

2ε

5

In+1
1,j+1 − I

n+1
1,j−1

2∆x
− αε

2

In2,j+1 − 2In2,j + In2,j−1

∆x
= −In+1

2,j , (A.17c)

ε2
Tn+1
j − Tnj

∆t
+ ε

In+1
0,j − In0,j

∆t
+ ε

In1,j+1 − In1,j−1

2∆x
− αε

2

In0,j+1 − 2In0,j + In0,j−1

∆x
= 0. (A.17d)

For (A.17a), multiplying it by In+1
0,j , we can get that

ε2In+1
0,j

In+1
0,j − In0,j

∆t
+ εIn+1

0,j

In1,j+1 − In1,j−1

2∆x
− αε

2
In+1
0,j

In0,j+1 − 2In0,j + In0,j−1

∆x
= In+1

0,j

(
(T 4
j )n+1 − In+1

0,j

)
.

(A.18)
For (A.17b) and (A.17c), shifting it backward one time step and multiplying 3In1,j and 5In2,j respectively,
we can derive that

3ε2In1,j
In1,j − I

n−1
1,j

∆t
+ εIn1,j

In0,j+1 − In0,j−1

2∆x
+ εIn1,j

In−1
2,j+1 − I

n−1
2,j−1

∆x
− 3αε

2
In1,j

In−1
1,j+1 − 2In−1

1,j + In−1
1,j−1

∆x
= −3(In1,j)

2,

5ε2In2,j
In2,j − I

n−1
2,j

∆t
+ εIn2,j

In1,j+1 − In1,j−1

∆x
− 5αε

2
In2,j

In−1
2,j+1 − 2In−1

2,j + In−1
2,j−1

∆x
= −5(In2,j)

2.

(A.19)
Summing (A.18) and (A.19) over j, then it holds that

ε2

2∆t

∑
j

[
(In+1

0,j )2− (In0,j)
2 + 3

(
(In1,j)

2 − (In−1
1,j )2

)
+ 5

(
(In2,j)

2 − (In−1
2,j )2

) ]
+A0 = A1 +A2 +A3, (A.20)

where

A0 =
ε2

2∆t

∑
j

[
(In+1

0,j − I
n
0,j)

2 + 3(In1,j − In−1
1,j )2 + 5(In2,j − In−1

2,j )2
]
, (A.21a)

A1 = − ε

2∆x

∑
j

[
In+1
0,j (In1,j+1 − In1,j−1) + In1,j(I

n
0,j+1 − In0,j−1) + 2In1,j(I

n−1
2,j+1 − I

n−1
2,j−1) + 2In2,j(I

n
1,j+1 − In1,j−1)

]
,

(A.21b)

A2 =
αε

2∆x

∑
j

[
In+1
0,j (In0,j+1 − 2In0,j + In0,j−1) + 3In1,j(I

n−1
1,j+1 − 2In−1

1,j + In−1
1,j−1) + 5In2,j(I

n−1
2,j+1 − 2In−1

2,j + In−1
2,j−1)

]
,

(A.21c)

A3 = −
∑
j

[
− In+1

0,j (T 4
j )n+1 + (In+1

0,j )2 + 3(In1,j)
2 + 5(In2,j)

2
]
. (A.21d)

Then we will begin from the approximation of A1 and A2. With some arrangement and the periodic
boundary condition, A1 is changed into

A1 =− ε

2∆x

∑
j

[
(In+1

0,j − I
n
0,j)(I

n
1,j+1 − In1,j−1) + 2(In1,j+1 − In1,j−1)(In2,j − In−1

2,j )
]

6
ε

2∆x

∑
j

[1

2
β2

1(In+1
0,j − I

n
0,j)

2 +
1

2β2
1

(In1,j+1 − In1,j−1)2 + β2
2(In2,j − In−1

2,j )2 +
1

β2
2

(In1,j+1 − In1,j−1)2
]

6
ε

2∆x

∑
j

[1

2
β2

1(In+1
0,j − I

n
0,j)

2 + β2
2(In2,j − In−1

2,j )2 +

(
2

β2
1

+
4

β2
2

)
(In1,j)

2
]
.

(A.22)
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With the estimation that∑
j

In+1
0,j (In0,j+1 − 2In0,j + In0,j−1)

=
∑
j

[
(In+1

0,j − I
n
0,j)(I

n
0,j+1 − 2In0,j + In0,j−1) + In0,j(I

n
0,j+1 − 2In0,j + In0,j−1)

]
6
∑
j

[1

2
β2

3(In+1
0,j − I

n
0,j)

2 +
2

β2
3

(In0,j − In0,j−1)2
]
−
∑
j

(In0,j − In0,j−1)2

=
∑
j

[1

2
β2

3(In+1
0,j − I

n
0,j)

2 + (
2

β2
3

− 1)
(
In0,j − In0,j−1

)2 ]
.

(A.23)

Similarly, it also holds that∑
j

In1,j(I
n−1
1,j+1 − 2In−1

1,j + In−1
1,j−1) =

∑
j

In−1
1,j (In1,j+1 − 2In1,j + In1,j−1)

6
∑
j

[1

2
β2

4(In1,j − In−1
1,j )2 + 4

(
2

β2
4

− 1

)
(In1,j)

2
]
,

∑
j

In2,j(I
n−1
2,j+1 − 2In−1

2,j + In−1
2,j−1) =

∑
j

In−1
2,j (In2,j+1 − 2In2,j + In2,j−1)

6
∑
j

[1

2
β2

5(In2,j − In−1
2,j )2 +

(
2

β2
5

− 1

)
(In2,j − In2,j−1)2

]
.

(A.24)

Let

β2
1 =

2ε∆x

∆t
− 2α, β2

2 =
5ε∆x

∆t
− 5α, β2

3 = 2, β2
4 =

2∆xε

α∆t
, β2

5 = 2, (A.25)

then together with (A.21), (A.22), (A.23), (A.24) and (A.25), (A.20) is reduced into

ε2

2

∑
j

[
(In+1

0,j )2 − (In0,j)
2 + 3

(
(In1,j)

2 − (In−1
1,j )2

)
+ 5

(
(In2,j)

2 − (In−1
2,j )2

) ]
6 β6

∑
j

(In1,j)
2 + ∆t

∑
j

[
In+1
0,j (T 4

j )n+1 − (In+1
0,j )2 − 5(In2,j)

2
]
,

(A.26)

with

β6 =
9

10

ε∆t

∆x

(
1

ε∆x
∆t − α

)
+

6α2(∆t)2

(∆x)2
− 6αε∆t

∆x
− 3∆t. (A.27)

If it holds for β6 that
β6 6 0, (A.28)

with the time step length (3.32), then we can derive the stability result (4.16). Precisely, with (A.17a)
and (A.17d), we can derive that

ε2
Tn+1
j − Tnj

∆t
= −(T 4

j )n+1 + In+1
0,j . (A.29)

Multiplying (A.29) with (T 4
j )n+1 and summing over j, it holds with (A.26)

∑
j

[
ε2

2∆t

(
(In+1

0,j )2 − (In0,j)
2 + 3

[
(In1,j)

2 − (In−1
1,j )2

]
+ 5

[
(In2,j)

2 − (In−1
2,j )2

] )
+

ε2

5∆t

[
(T 5
j )n+1 − (T 5

j )n
]]

6 −
∑
j

[
In+1
0,j − (T 4

j )n+1
]2

6 0.

(A.30)

We derive the energy stability (4.16). The only point left is to prove (A.28), which we will be done in
two cases:
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1. ε > ∆x, in which case,
∆t = Cε∆x. (A.31)

Substituting (A.31) into (A.27), we can deduce that

β6 =
9C2ε2

10

(
1

1− αC

)
+ 6αε2C(αC − 1)− 3C∆xε. (A.32)

Thus if

0 < C < min

(
ε

α∆x
,

10∆x

3ε+ 10∆xα

)
, (A.33)

it holds that β6 6 0.

For the coefficients β2
i , i = 1, · · · 5, it requires that β2

i > 0. Thus, from (A.25), it demands that

ε∆x

∆t
− α > 0. (A.34)

Substituting (A.31) into (A.34), we can obtain that

C <
1

α
. (A.35)

Thus, the constrain on C is changed into

0 < C < min

(
1

α
,

10∆x

3ε+ 10∆xα

)
. (A.36)

2. ε < ∆x, in which case
∆t = C∆x2. (A.37)

Substituting (A.37) into (A.27), we can deduce that

β6 =
9

10
C2ε∆x2

(
1

ε− αC∆x

)
+ 6α∆xC(αC∆x− ε)− 3C∆x2. (A.38)

Thus if

0 < C < min

(
ε

α∆x
,

10ε

3ε+ 10∆xα

)
, (A.39)

it holds that β6 6 0. Similarly, we can verify that the constrain β2
i > 0, i = 1, · · · 5 will not affect

the condition (A.39), then the proof is finished.

For ε < ∆x, it is always true that α = exp(−1/ε2) is quite small, and (A.39) could be reduced into

0 < C <
10

3
. (A.40)

A.5 Analysis of the higher-order scheme

From the test of the AP property for the numerical scheme, we found that even for the IMEX3 scheme
with WENO reconstruction, the convergence order is only two. Analysis of the numerical scheme shows
that when solving Tn+1, the fourth-order polynomial equation of Tn+1 is solved, where (Tn+1)4 is
approximated as

(T 4)i ≈ (Ti)
4 (A.41)

instead of

(T )4
i ≈

∫ x
i+1

2
x
i− 1

2

T 4dx

∆x
, (A.42)

where Ti is the cell average of cell i. Noting that∫ x
i+1

2
x
i− 1

2

T (x)dx

∆x
= T (xi) +

1

24
(T (ξi))

′′
∆x2, ξ ∈ [xi− 1

2
, xi+ 1

2
], (A.43)
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and ∫ x
i+1

2
x
i− 1

2

T 4(x)dx

∆x
= T 4(xi) +

1

24
(T 4(ηi))

′′
∆x2, ηi ∈ [xi− 1

2
, xi+ 1

2
], (A.44)

thus, it holds ∫ x
i+1

2
x
i− 1

2

T 4dx

∆x
− (Ti)

4 = O(∆x2). (A.45)

Therefore, the convergence order of the whole numerical scheme is at most two.

References

[1] T. A. Brunner. Forms of approximate radiation transport. Sandia report, 2002.

[2] A. Crestetto, N. Crouseilles, G. Dimarco, and M. Lemou. Asymptotically complexity diminishing
schemes (ACDS) for kinetic equations in the diffusive scaling. J. Comput. Phys., 394:243–262, 2019.

[3] J. Densmore. Asymptotic analysis of the spatial discretization of radiation absorption and re-
emission in Implicit Monte Carlo. J. Comput. Phys., 230(4):1116–1133, 2011.

[4] J. Densmore, H. Park, A. Wollaber, R. Rauenzahn, and D. Knoll. Monte Carlo simulation methods
in moment-based scale-bridging algorithms for thermal radiative-transfer problems. J. Comput.
Phys., 284:40–58, 2015.

[5] Y. Di, Y. Fan, Z. Kou, R. Li, and Y. Wang. Filtered hyperbolic moment method for the Vlasov
equation. J. Sci. Comput., 79(2):969–991, 2019.

[6] N. Discacciati, J. Hesthaven, and R. Deep. Controlling oscillations in high-order Discontinuous
Galerkin schemes using artificial viscosity tuned by neural networks. J. Comput. Phys., 409:109304,
2020.

[7] J. Fleck and J. Cummings. An implicit Monte Carlo scheme for calculating time and frequency
dependent nonlinear radiation transport. J. Comput. Phys., 8(3):313–342, 1971.

[8] N. Gentile. Implicit Monte Carlo diffusion-an acceleration method for Monte Carlo time-dependent
radiative transfer simulations. J. Comput. Phys., 172(2):543–571, 2001.

[9] H. Hammer, H. Park, and L. Chacón. A multi-dimensional, moment-accelerated deterministic par-
ticle method for time-dependent, multi-frequency thermal radiative transfer problems. J. Comput.
Phys., 386:653–674, 2019.

[10] T. Hou and R. Li. Computing nearly singular solutions using pseudo-spectral methods. J. Comput.
Phys., 226(1):379–397, 2007.

[11] J. Jang, F. Li, J. Qiu, and T. Xiong. Analysis of asymptotic preserving dg-imex schemes for linear
kinetic transport equations in a diffusive scaling. SIAM J. Numer. Anal., 52(4):2048–2072, 2014.

[12] J. Jang, F. Li, J. Qiu, and T. Xiong. High order asymptotic preserving DG-IMEX schemes for
discrete-velocity kinetic equations in a diffusive scaling. J. Comput. Phys., 281:199–224, 2015.

[13] S. Jin and C. Levermore. The discrete-ordinate method in diffusive regimes. Transp. Theory Stat.
Phys, 20(1-2):413–439, 1991.

[14] S. Jin and C. Levermore. Fully discrete numerical transfer in diffusive regimes. Transp. Theory
Stat. Phys, 22(6):739–791, 1993.

[15] S. Jin, L. Pareschi, and G. Toscani. Uniformly accurate diffusive relaxation schemes for multiscale
transport equations. SIAM J. Numer. Anal., 38(3):913–936, 2000.

[16] D. Kershaw. Flux limiting nature’s own way. Technical Report UCRL-78378, Lawrence Livermore
National Laboratory, Livermore, CA, 1976.

[17] A. Klar. An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit.
SIAM J. Numer. Anal, 35(6):1073–1094, 1998.

26



[18] R. Koch, W. Krebs, S. Wittig, and R. Viskanta. Discrete ordinates quadrature schemes for multi-
dimensional radiative transfer. J. Quant. Spectrosc. Ra., 53(4):353–372, 1995.

[19] Los Alamos National Laboratory. An implicit Monte Carlo code for thermal radiative transfer:
Capabilities, development, and usag. LA-14195-MS, 2000.

[20] V. Laboure, R. McClarren, and C. Hauck. Implicit filtered PN for high-energy density thermal
radiation transport using discontinuous galerkin finite elements. J. Comput. Phys., 321:624–643,
2016.

[21] M. Laiu, M. Frank, and C. Hauck. A positive asymptotic-preserving scheme for linear kinetic
transport equations. SIAM J. Sci. Comput., 41:A1500–A1526, 2019.

[22] A. Larsen and J. Morel. Asymptotic solutions of numerical transport problems in optically thick,
diffusive regimes. J. Comput. Phys., 69(2):283–324, 1987.

[23] A. Larsen and J. Morel. Asymptotic solutions of numerical transport problems in optically thick,
diffusive regimes. ii. J. Comput. Phys., 83(1):212–236, 1989.

[24] E. Larsen, A. Kumar, and J. Morel. Properties of the implicitly time-differenced equations of thermal
radiation transport. J. Comput. Phys., 238:82–96, 2013.

[25] K. Lathrop and B. Garlson. Discrete ordinates angular quadrature of the neutron transport equation.
Los Alamos Scientific Laboratory, 1965.

[26] E. Lemou and L. Mieussens. A new asymptotic preserving scheme based on micro-macro formulation
for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput., 31:334–368, 2010.

[27] E. Lewis and W. Miller. Computational Methods in Neutron Transport. United States, 1993.

[28] W. Li, C. Liu, Y. Zhu, J. Zhang, and K. Xu. Unified gas-kinetic wave-particle methods iii: Multiscale
photon transport. J. Comput. Phys., 408:109280, 2020.

[29] P. Maginot, J. Ragusa, and J. Morel. High-order solution methods for grey discrete ordinates
thermal radiative transfer. J. Comput. Phys., 327:719–746, 2016.

[30] K. Mathews. On the propagation of rays in discrete ordinates. Nucl. Sci. Eng., 132:155–180, 1999.

[31] R. McClarren, T. Evans, R. Lowrie, and J. Densmore. Semi-implicit time integration for PN thermal
radiative transfer. J. Comput. Phys., 227(16):7561–7586, 2008.

[32] R. McClarren and C. Hauck. Robust and accurate filtered spherical harmonics expansions for
radiative transfer. J. Comput. Phys., 229(16):5597–5614, 2010.

[33] R. McClarren and C. Hauck. Simulating radiative transfer with filtered spherical harmonics. Phys.
Lett. A, 374(22):2290–2296, 2010.

[34] R. McClarren, J. Holloway, and T. Brunner. On solutions to the Pn equations for thermal radiative
transfer. J. Comput. Phys., 227(5):2864–2885, 2008.

[35] L. Mieussens. On the asymptotic preserving property of the unified gas kinetic scheme for the
diffusion limit of linear kinetic models. J. Comput. Phys., 253:138–156, 2013.

[36] J. Morel, T. Wareing, R. Lowrie, and D. Parsons. Analysis of ray-effect mitigation techniques. Nucl.
Sci. Eng., 144:1–22, 2003.

[37] G. Olson. Second-order time evolution of PN equations for radiation transport. J. Comput. Phys.,
228(8):3072–3083, 2009.

[38] H. Park, D. Knoll, R. Rauenzahn, A. Wollaber, and J. Densmore. A consistent, moment-based,
multiscale solution approach for thermal radiative transfer problems. Transp. Theory Stat. Phys.,
41(3-4):284–303, 2012.

[39] Z. Peng, Y. Cheng, J. Qiu, and F. Li. Stability-enhanced AP IMEX-LDG schemes for linear kinetic
transport equations under a diffusive scaling. J. Comput. Phys., 415:109485, 2020.

27



[40] B. Seibold and M. Frank. Starmap code. website.http://www.math.temple.edu/ sei-
bold/research/starmap.

[41] B. Seibold and M. Frank. Starmap-a second order staggered grid method for spherical harmonics
moment equations of radiative transfer. ACM T. Math. Software (TOMS), 41(1):4, 2014.

[42] Y. Shi, P. Song, and W. Sun. An asymptotic preserving unified gas kinetic particle method for
radiative transfer equations. J. Comput. Phys., 420:109687, 2020.

[43] W. Sun, S. Jiang, and K. Xu. An asymptotic preserving unified gas kinetic scheme for gray radiative
transfer equations. J. Comput. Phys., 285(15):265–279, 2015.

[44] W. Sun, S. Jiang, and K. Xu. An asymptotic preserving implicit unified gas kinetic scheme for
frequency-dependent radiative transfer equations. Int. J. Numer. Anal. Mod., 15(1-2):134–153,
2018.

[45] M. Tang, L. Wang, and X. Zhang. Accurate front capturing asymptotic preserving scheme for
nonlinear gray radiative transfer equation. SIAM J. Sci. Comput., 43(3):B759–B783, 2021.

[46] J. Warsa, T. Wareing, and J. Morel. Krylov iterative methods and the degraded effectiveness
of diffusion synthetic acceleration for multidimensional SN calculations in problems with material
discontinuities. Nucl. Sci. Eng., 147:218–248, 2004.

[47] T. Xiong, J. Jang, F. Li, and J. Qiu. High order asymptotic preserving nodal discontinuous Galerkin
IMEX schemes for the BGK equation. J. Comput. Phys., 284:70–94, 2015.

[48] T. Xiong, W. Sun, Y. Shi, and P. Song. High order asymptotic preserving discontinuous Galerkin
methods for gray radiative transfer equations. arXiv:2011.14090, 2020.

[49] B. Yan and S. Jin. A successive penalty-based asymptotic-preserving scheme for kinetic equations.
SIAM J. Sci. Comput., 35(1):A150–A172, 2013.

28


	1 Introduction
	2 Radiative transfer equations and PN method
	2.1 The gray approximation to radiative transfer equations
	2.2 PN system

	3 Asymptotic-preserving IMEX method
	3.1 Formal order analysis
	3.2 Semi-discrete IMEX methods
	3.3 Fully discrete numerical scheme
	3.3.1 Spatial Discretization
	3.3.2 Time step length
	3.3.3 Algorithm


	4 Formal asymptotic property and stability analysis
	4.1 Formal asymptotic analysis
	4.2 Energy stability
	4.2.1 Gray approximation of the radiative transfer equations


	5 Numerical results
	5.1 The AP property
	5.2 Marshak wave problems
	5.3 A lattice problem
	5.4 A hohlraum problem

	6 Conclusions
	A Appendix
	A.1 The gray approximation of the radiative transfer equations for 1D angle problem and related PN equations
	A.2 Inflow boundary condition for PN equations
	A.3 Proof of Proposition 2
	A.4 Proof of Theorem 2
	A.5 Analysis of the higher-order scheme


